English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/167149
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Boosted Random Ferns for object detection

AutorVillamizar, Michael; Andrade-Cetto, Juan ; Sanfeliu, Alberto; Moreno-Noguer, Francesc
Palabras claveOnline-boosting
Boosting
Random ferns
Object detection
Image processing and computer vision
Fecha de publicación2018
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Transactions on Pattern Analysis and Machine Intelligence 40(2): 272-288 (2018)
ResumenIn this paper we introduce the Boosted Random Ferns (BRFs) to rapidly build discriminative classifiers for learning and detecting object categories. At the core of our approach we use standard random ferns, but we introduce four main innovations that let us bring ferns from an instance to a category level, and still retain efficiency. First, we define binary features on the histogram of oriented gradients-domain (as opposed to intensity-), allowing for a better representation of intra-class variability. Second, both the positions where ferns are evaluated within the sliding window, and the location of the binary features for each fern are not chosen completely at random, but instead we use a boosting strategy to pick the most discriminative combination of them. This is further enhanced by our third contribution, that is to adapt the boosting strategy to enable sharing of binary features among different ferns, yielding high recognition rates at a low computational cost. And finally, we show that training can be performed online, for sequentially arriving images. Overall, the resulting classifier can be very efficiently trained, densely evaluated for all image locations in about 0.1 seconds, and provides detection rates similar to competing approaches that require expensive and significantly slower processing times. We demonstrate the effectiveness of our approach by thorough experimentation in publicly available datasets in which we compare against state-of-the-art, and for tasks of both 2D detection and 3D multi-view estimation.
Versión del editorhttps://doi.org/10.1109/TPAMI.2017.2676778
URIhttp://hdl.handle.net/10261/167149
Identificadoresdoi: 10.1109/TPAMI.2017.2676778
issn: 0162-8828
e-issn: 1939-3539
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BRFs.pdf4,79 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.