English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/167142
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Robot motion adaptation through user intervention and reinforcement learning

AutorJevtić, Aleksandar; Colomé, Adrià ; Alenyà, Guillem ; Torras, Carme
Palabras claveHuman-robot interaction
Motion learning
Learning and adaptive systems
Fecha de publicación2018
CitaciónPattern Recognition Letters 105: 67-75 (2018)
ResumenAssistant robots are designed to perform specific tasks for the user, but their performance is rarely optimal, hence they are required to adapt to user preferences or new task requirements. In the previous work, the potential of an interactive learning framework based on user intervention and reinforcement learning (RL) was assessed. The framework allowed the user to correct an unfitted segment of the robot trajectory by using hand movements to guide the robot along a corrective path. So far, only the usability of the framework was evaluated through experiments with users. In the current work, the framework is described in detail and its ability to learn from a set of sample trajectories using an RL algorithm is analyzed. To evaluate the learning performance, three versions of the framework are proposed that differ in the method used to obtain the sample trajectories, which are: human-guided learning, autonomous learning, and combined human-guided with autonomous learning. The results show that the combination of the human-guided and autonomous learning achieved the best performance, and although it needed a higher number of sample trajectories than the human-guided learning, it required less user involvement. Autonomous learning alone obtained the lowest reward value and needed the highest number of sample trajectories.
Versión del editorhttps://doi.org/10.1016/j.patrec.2017.06.017
Identificadoresdoi: 10.1016/j.patrec.2017.06.017
issn: 0167-8655
e-issn: 1872-7344
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Robot-learn.pdf Embargado hasta 17 de junio de 20191,86 MBAdobe PDFVista previa
Visualizar/Abrir     Petición de una copia
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.