English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/167086
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Random clustering ferns for multimodal object recognition

AutorVillamizar, Michael; Garrell, Anaís ; Sanfeliu, Alberto; Moreno-Noguer, Francesc
Palabras claveBoosting
pLSA
Recognition
Random trees
Fecha de publicación2017
EditorSpringer Nature
CitaciónNeural Computing and Applications 28(9): 2445-2460 (2017)
ResumenWe propose an efficient and robust method for the recognition of objects exhibiting multiple intra-class modes, where each one is associated with a particular object appearance. The proposed method, called random clustering ferns, combines synergically a single and real-time classifier, based on the boosted assembling of extremely randomized trees (ferns), with an unsupervised and probabilistic approach in order to recognize efficiently object instances in images and discover simultaneously the most prominent appearance modes of the object through tree-structured visual words. In particular, we use boosted random ferns and probabilistic latent semantic analysis to obtain a discriminative and multimodal classifier that automatically clusters the response of its randomized trees in function of the visual object appearance. The proposed method is validated extensively in synthetic and real experiments, showing that the method is capable of detecting objects with diverse and complex appearance distributions in real-time performance.
Versión del editorhttps://doi.org/10.1007/s00521-016-2284-x
URIhttp://hdl.handle.net/10261/167086
Identificadoresdoi: 10.1007/s00521-016-2284-x
issn: 0941-0643
e-issn: 1433-3058
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RandomFernsRecog.pdf6,01 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.