English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/167081
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

TED: A tolerant edit distance for segmentation evaluation

AutorFunke, Jan; Klein, Jonas; Moreno-Noguer, Francesc; Cook, Matthew
Palabras claveSegmentation
Electron microscopy
Neuron segmentation
Learning
Evaluation
Computer vision
Fecha de publicación2017
EditorElsevier
CitaciónMethods 115: 119-127 (2017)
ResumenIn this paper, we present a novel error measure to compare a computer-generated segmentation of images or volumes against ground truth. This measure, which we call Tolerant Edit Distance (TED), is motivated by two observations that we usually encounter in biomedical image processing: (1) Some errors, like small boundary shifts, are tolerable in practice. Which errors are tolerable is application dependent and should be explicitly expressible in the measure. (2) Non-tolerable errors have to be corrected manually. The effort needed to do so should be reflected by the error measure. Our measure is the minimal weighted sum of split and merge operations to apply to one segmentation such that it resembles another segmentation within specified tolerance bounds. This is in contrast to other commonly used measures like Rand index or variation of information, which integrate small, but tolerable, differences. Additionally, the TED provides intuitive numbers and allows the localization and classification of errors in images or volumes. We demonstrate the applicability of the TED on 3D segmentations of neurons in electron microscopy images where topological correctness is arguable more important than exact boundary locations. Furthermore, we show that the TED is not just limited to evaluation tasks. We use it as the loss function in a max-margin learning framework to find parameters of an automatic neuron segmentation algorithm. We show that training to minimize the TED, i.e., to minimize crucial errors, leads to higher segmentation accuracy compared to other learning methods.
DescripciónarXiv:1503.02291v3
Versión del editorhttps://doi.org/10.1016/j.ymeth.2016.12.013
URIhttp://hdl.handle.net/10261/167081
Identificadoresdoi: 10.1016/j.ymeth.2016.12.013
e-issn: 1095-9130
issn: 1046-2023
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
TEDevalua.pdf928,48 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.