English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/167043
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

DUST: Dual union of spatio-temporal subspaces for monocular multiple object 3D reconstruction

AutorAgudo, Antonio ; Moreno-Noguer, Francesc
Fecha de publicación2017
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Conference on Computer Vision and Pattern Recognition: 1513-1521 (2017)
ResumenWe present an approach to reconstruct the 3D shape of multiple deforming objects from incomplete 2D trajectories acquired by a single camera. Additionally, we simultaneously provide spatial segmentation (i.e., we identify each of the objects in every frame) and temporal clustering (i.e., we split the sequence into primitive actions). This advances existing work, which only tackled the problem for one single object and non-occluded tracks. In order to handle several objects at a time from partial observations, we model point trajectories as a union of spatial and temporal subspaces, and optimize the parameters of both modalities, the non-observed point tracks and the 3D shape via augmented Lagrange multipliers. The algorithm is fully unsupervised and results in a formulation which does not need initialization. We thoroughly validate the method on challenging scenarios with several human subjects performing different activities which involve complex motions and close interaction. We show our approach achieves state-of-the-art 3D reconstruction results, while it also provides spatial and temporal segmentation.
DescripciónTrabajo presentado a la 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), celebrada en Honolulu, Hawaii (US) del 21 al 26 de julio de 2016.
Versión del editorhttps://doi.org/10.1109/CVPR.2017.165
URIhttp://hdl.handle.net/10261/167043
Identificadoresdoi: 10.1109/CVPR.2017.165
isbn: 978-1-5386-0458-8
Aparece en las colecciones: (IRII) Libros y partes de libros
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
dustdual.pdf2,45 MBUnknownVisualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.