English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/167033
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Thermal management in plug-in hybrid electric vehicles: A real-time nonlinear model predictive control implementation

AutorLopez-Sanz, Jorge; Ocampo-Martinez, Carlos; Alvarez-Florez, Jesus; Moreno-Eguilaz, Manuel; Ruiz-Mansilla, Rafael; Kalmus, Julian; Gräeber, Manuel; Lux, Gerhard
Fecha de publicación2017
EditorInstitute of Electrical and Electronics Engineers
CitaciónIEEE Transactions on Vehicular Technology 66(9): 7751-7760 (2017)
ResumenA real-time nonlinear model predictive control (NMPC) for the thermal management (TM) of the electrical components cooling circuit in a Plug-In Hybrid Electric Vehicle (PHEV) is presented. The electrical components are highly temperature sensitive and, therefore, working out of the ranges recommended by the manufacturer can lead to their premature aging or even failure. Consequently, the goals for an accurate and efficient TM are to keep the main component, the Li-ion battery, within optimal working temperatures, and to consume the minimum possible electrical energy through the cooling circuit actuators. This multi-objective requirement is formulated as a finite-horizon optimal control problem (OCP) that includes a multi-objective cost function, several constraints, and a prediction model especially suitable for optimization. The associated NMPC is performed on real time by the optimization package MUSCOD-II and is validated in three different repeatable test-drives driven with a PHEV. Starting from identical conditions, each cycle is driven once being the cooling circuit controlled with NMPC and once with a conventional approach based on a finite-state machine. Compared to the conventional strategy, the NMPC proposed here results in a more accurate and healthier temperature performance, and at the same time, leads to reductions in the electrical consumption up to 8%.
Versión del editorhttps://doi.org/10.1109/TVT.2017.2678921
URIhttp://hdl.handle.net/10261/167033
Identificadoresdoi: 10.1109/TVT.2017.2678921
issn: 0018-9545
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
thermalimplementa.pdf1,12 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.