English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/166954
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

The uncertainty of crop yield projections is reduced by improved temperature response functions

AutorWang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rötter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; Wall, Gerard W.; White, Jefrrey W.; Reynolds, Matthew P.; Alderman, Phillip; Aggarwal, Pramod K.; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andrew J.; De Sanctis, Giacomo; Doltra, Jordi; Dumont, Benjamin; Fereres Castiel, Elías ; García Vila, Margarita ; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A.; Izaurralde, Roberto C.; Jabloun, Mohamed; Jones, Curtis D.; Kersebaum, Kurt C.; Koehler, Ann-Kristin; Liu, Leilei; Müller, Christoph; Kumar, Soora Naresh; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E.; Palosuo, Taru; Priesack, Eckart; Rezaei, Ehsan Eyshi; Ripoche, Dominique; Ruane, Alexander C.; Semenov, Mikhail A.; Shcherbak, Iurii; Stöckle, Claudio; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wallach, Daniel; Wang, Zhimin; Wolf, Joost; Zhu, Yan; Asseng, Senthold
Fecha de publicación17-jul-2017
EditorSpringer Nature
CitaciónNature Plants 3: 17102 (2017)
ResumenIncreasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
Versión del editorhttp://dx.doi.org/10.1038/nplants.2017.102
URIhttp://hdl.handle.net/10261/166954
DOI10.1038/nplants.2017.102
ISSN2055-026X
E-ISSN2055-0278
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.