English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/166954
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

Title

The uncertainty of crop yield projections is reduced by improved temperature response functions

AuthorsWang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rötter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; Wall, Gerard W.; White, Jefrrey W.; Reynolds, Matthew P.; Alderman, Phillip; Aggarwal, Pramod K.; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andrew J.; De Sanctis, Giacomo; Doltra, Jordi; Dumont, Benjamin; Fereres Castiel, Elías ; García Vila, Margarita ; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A.; Izaurralde, Roberto C.; Jabloun, Mohamed; Jones, Curtis D.; Kersebaum, Kurt C.; Koehler, Ann-Kristin; Liu, Leilei; Müller, Christoph; Kumar, Soora Naresh; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E.; Palosuo, Taru; Priesack, Eckart; Rezaei, Ehsan Eyshi; Ripoche, Dominique; Ruane, Alexander C.; Semenov, Mikhail A.; Shcherbak, Iurii; Stöckle, Claudio; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wallach, Daniel; Wang, Zhimin; Wolf, Joost; Zhu, Yan; Asseng, Senthold
Issue Date17-Jul-2017
PublisherSpringer Nature
CitationNature Plants 3: 17102 (2017)
AbstractIncreasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.
Publisher version (URL)http://dx.doi.org/10.1038/nplants.2017.102
URIhttp://hdl.handle.net/10261/166954
DOIhttp://dx.doi.org/10.1038/nplants.2017.102
ISSN2055-026X
E-ISSN2055-0278
Appears in Collections:(IAS) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.