English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/166876
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


In vitro ruminal biohydrogenation of eicosapentaenoic (EPA), docosapentaenoic (DPA), and docosahexaenoic acid (DHA) in cows and ewes: Intermediate metabolites and pathways

AuthorsToral, Pablo G. ; Hervás, Gonzalo ; Leskinen, H.; Shingfield, Kevin J.; Frutos, Pilar
Ruminal lipid metabolism
Issue Date2018
PublisherAmerican Dairy Science Association
CitationJournal of Dairy Science 101: 6109-6121 (2018)
AbstractA great deal of uncertainty still exists about intermediate metabolites and pathways explaining the biohydrogenation (BH) of 20- and 22-carbon polyunsaturated fatty acids (PUFA). Therefore, this study was conducted to provide further insight into the ruminal metabolism of 20:5 n-3 (EPA), 22:5 n-3 (DPA), and 22:6 n-3 (DHA), the main n-3 PUFA present in the marine lipids used in dairy ruminant feeding, and to examine potential differences between bovine and ovine. To meet this aim, we investigated the 20- and 22-carbon metabolites accumulated during in vitro incubation of EPA, DPA, and DHA with rumen inocula from cows and ewes. The PUFA were added at a dose of 2% incubated dry matter and digesta samples were analyzed after 24 h of incubation using complementary gas-liquid chromatography of fatty acid methyl esters and gas chromatography-mass spectrometry of 4,4-dimethyloxazoline derivatives. Results suggested that the main BH pathway of EPA and DPA would proceed via the reduction of the double bond closest to the carboxyl group (cis-5 in EPA and cis-7 in DPA); curiously, this mechanism seemed of much lower importance for DHA. Thus, DPA would not be a major intermediate product of DHA and their BH might actually follow separate pathways, with the accumulation of numerous unique metabolites in each case. A principal component analysis supported this hypothesis, with a clear separation between PUFA treatments in the score and loading plots. Within EPA and DPA groups, cow and ewe samples loaded separately from each other but not distant. No conjugated 20:5, 22:5, or 22:6 isomer compatible with the initial product of EPA, DPA, or DHA metabolism, respectively, was identified in the ruminal digesta, although this would not unequivocally exclude their transient formation. In this regard, results from DPA incubations provided the first indication that the metabolism of this very long chain PUFA may involve the formation of conjugated double bond structures. The BH of EPA, DPA, and DHA resulted in the appearance of several tentative trans-10-containing metabolites, showing a general trend to be more abundant in the digesta of ewes than in that of cows. This finding was speculated to have some relationship with the susceptibility of dairy sheep to marine lipid-induced milk fat depression. Differences in the relative proportion of intermediate products would also suggest an influence of ruminant species on BH kinetics, with a process that would likely be slower and less complete in cows than in ewes. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Description13 páginas, 4 figuras, 2 tablas.
Publisher version (URL)http://dx.doi.org/10.3168/jds.2017-14183
Appears in Collections:(IGM) Artículos
Files in This Item:
File Description SizeFormat 
Toral et al_2018_DMOX post-print.pdfArtículo principal1,36 MBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.