English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/166706
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

Comparative assessment of LPV-based predictive control strategies for a pasteurization plant

AuthorsKarimi Pour, Fatemeh; Puig, Vicenç ; Ocampo-Martinez, Carlos
Issue Date2017
PublisherInstitute of Electrical and Electronics Engineers
Citation4th International Conference on Control, Decision and Information Technologies: 821-826 (2017)
AbstractThis paper presents a comparative study of three different approaches to design Model Predictive Control (MPC) strategies for a pasteurization plant using Linear Parameter Varying (LPV) models. The first two methods consider the LPV model in the design of the MPC controller in two different manners. The last approach uses a Robust MPC controller for taking parameter variations of the LPV model into account. It is assumed that the disturbances are unknown but bounded and the zonotopic set representation is used for modeling the uncertainty. In addition, a comprehensive comparison of the closed-loop performance accounting the proposed approaches is carried out through a high-fidelity simulator of a utility-scale pasteurization plant.
DescriptionTrabajo presentado a la 4th International Conference on Control, Decision and Information Technologies (CoDIT), celebrada en Barcelona (España) del 5 al 7 de abril de 2017.
Publisher version (URL)https://doi.org/10.1109/CoDIT.2017.8102696
URIhttp://hdl.handle.net/10261/166706
ISBN978-1-5090-6466-3
Identifiersdoi: 10.1109/CoDIT.2017.8102696
Appears in Collections:(IRII) Libros y partes de libros
Files in This Item:
File Description SizeFormat 
comPasteurplant.pdf736,71 kBUnknownView/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.