Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/166670
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorLunni, Dario-
dc.contributor.authorSantamaria-Navarro, Àngel-
dc.contributor.authorRossi, Roberto-
dc.contributor.authorRocco, Paolo-
dc.contributor.authorBascetta, Luca-
dc.contributor.authorAndrade-Cetto, Juan-
dc.date.accessioned2018-06-20T08:57:32Z-
dc.date.available2018-06-20T08:57:32Z-
dc.date.issued2017-
dc.identifierdoi: 10.1109/ICUAS.2017.7991347-
dc.identifierisbn: 978-1-5090-4496-2-
dc.identifier.citationInternational Conference on Unmanned Aircraft Systems: 87-93 (2017)-
dc.identifier.urihttp://hdl.handle.net/10261/166670-
dc.descriptionTrabajo presentado a la International Conference on Unmanned Aircraft Systems (ICUAS), celebrada en Miami (US) del 13 al 16 de junio de 2017.-
dc.description.abstractThis paper presents a nonlinear model predictive controller to follow desired 3D trajectories with the end effector of an unmanned aerial manipulator (i.e., a multirotor with a serial arm attached). To the knowledge of the authors, this is the first time that such controller runs online and on board a limited computational unit to drive a kinematically augmented aerial vehicle. Besides the trajectory following target, we explore the possibility of accomplishing other tasks during flight by taking advantage of the system redundancy. We define several tasks designed for aerial manipulators and show in simulation case studies how they can be achieved by either a weighting strategy, within a main optimization process, or a hierarchical approach consisting on nested optimizations. Moreover, experiments are presented to demonstrate the performance of such controller in a real robot.-
dc.description.sponsorshipTheir work was partially funded by the EU project AEROARMS H2020-ICT-2014-1-644271, and by the Spanish Ministry of Economy and Competitiveness project ROBINSTRUCT TIN2014-58178-R.-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/644271-
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2014-58178-R-
dc.relation.isversionofPostprint-
dc.rightsopenAccess-
dc.titleNonlinear model predictive control for aerial manipulation-
dc.typecomunicación de congreso-
dc.identifier.doi10.1109/ICUAS.2017.7991347-
dc.relation.publisherversionhttps://doi.org/10.1109/ICUAS.2017.7991347-
dc.date.updated2018-06-20T08:57:32Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderEuropean Commission-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.type.coarhttp://purl.org/coar/resource_type/c_5794es_ES
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairetypecomunicación de congreso-
Aparece en las colecciones: (IRII) Libros y partes de libros
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
nonlimani.pdf1,44 MBUnknownVisualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

225
checked on 23-abr-2024

Download(s)

479
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.