English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/166652
Título

The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation

AutorBlesa, Alba ; Baquedano, Ignacio; Quintáns, Nieves G.; Mata, Carlos P.; Castón, José R.; Berenguer, José
Fecha de publicación10-mar-2017
EditorPublic Library of Science
CitaciónPLoS Genetics 13 (2017)
ResumenIn addition to natural competence, some Thermus thermophilus strains show a high rate of DNA transfer via direct cell-to-cell contact. The process is bidirectional and follows a two-step model where the donor cell actively pushes out DNA and the recipient cell employs the natural competence system to take up the DNA, in a hybrid transformation-dependent conjugation process (transjugation). While the DNA uptake machinery is well known as in other bacterial species that undergo transformation, the pushing step of transjugation remains to be characterized. Here we have searched for hypothetical DNA translocases putatively involved in the pushing step of transjugation. Among candidates encoded by T. thermophilus HB27, the TdtA protein was found to be required for DNA pushing but not for DNA pulling during transjugation, without affecting other cellular processes. Purified TdtA shows ATPase activity and oligomerizes as hexamers with a central opening that can accommodate double-stranded DNA. The tdtA gene was found to belong to a mobile 14 kbp-long DNA element inserted within the 3′ end of a tRNA gene, flanked by 47 bp direct repeats. The insertion also encoded a homolog of bacteriophage site-specific recombinases and actively self-excised from the chromosome at high frequency to form an apparently non-replicative circular form. The insertion also encoded a type II restriction endonuclease and a NurA-like nuclease, whose activities were required for efficient transjugation. All these data support that TdtA belongs to a new type of Integrative and Conjugative Element which promotes the generalized and efficient transfer of genetic traits that could facilitate its co-selection among bacterial populations.
URIhttp://hdl.handle.net/10261/166652
Identificadoresdoi: 10.1371/journal.pgen.1006669
issn: 1553-7404
Aparece en las colecciones: (CBM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BerenguerJ_TheTransjugationMachineryOfThermus.pdf1,67 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.