English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/166610

Partitioning for large-scale systems: A sequential distributed MPC design

AutorBarreiro-Gómez, Julian ; Ocampo-Martinez, Carlos; Quijano, Nicanor
Palabras clavePartitioning
Large-scale systems
Distributed model predictive control
Fecha de publicación2017
CitaciónIFAC papers online 50(1): 8838-8843 (2017)
ResumenLarge-scale systems involve a high number of variables making challenging the design of controllers because of information availability and computational burden issues. Normally, the measurement of all the states in a large-scale system implies to have a big communication network, which might be quite expensive. On the other hand, the treatment of large amount of data to compute the appropriate control inputs implies high computational costs. An alternative to mitigate the aforementioned issues is to split the problem into several sub-systems. Thus, computational tasks may be split and assigned to different local controllers, letting to reduce the required time to compute the control inputs. Additionally, the partitioning of the system allows control designers to simplify the communication network. This paper presents a partitioning algorithm performed by considering an information-sharing graph that can be generated for any control strategy and for any dynamical large-scale system. Finally, a distributed model predictive control (DMPC) is designed for a large-scale system as an application of the proposed partitioning method.
DescripciónTrabajo presentado al 20th IFAC (International Federation of Automatic Control) World Congress, celebrado en Toulouse (Francia) del 9 al 14 de julio de 2017.
Identificadoresdoi: 10.1016/j.ifacol.2017.08.1539
issn: 1474-6670
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.