English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/166488
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Stochastic model predictive control approaches applied to drinking water networks

AutorGrosso, J. M.; Velarde, P.; Ocampo-Martinez, Carlos; Maestre, Jose Maria; Puig, Vicenç
Palabras claveSystem disturbances
Management of water systems
Stochastic programming
Model predictive control
Fecha de publicación2017
EditorJohn Wiley & Sons
CitaciónOptimal Control Applications and Methods 38(4): 541-558 (2017)
ResumenControl of drinking water networks is an arduous task, given their size and the presence of uncertainty in water demand. It is necessary to impose different constraints for ensuring a reliable water supply in the most economic and safe ways. To cope with uncertainty in system disturbances due to the stochastic water demand/consumption and optimize operational costs, this paper proposes three stochastic model predictive control (MPC) approaches, namely, chance-constrained MPC, tree-based MPC, and multiple-scenario MPC. A comparative assessment of these approaches is performed when they are applied to real case studies, specifically, a sector and an aggregate version of the Barcelona drinking water network in Spain.
URIhttp://hdl.handle.net/10261/166488
Identificadoresdoi: 10.1002/oca.2269
e-issn: 1099-1514
issn: 0143-2087
Aparece en las colecciones: (IRII) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.