English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/165965
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Exactly solvable Richardson-Gaudin models in condensed matter and nuclear physics

AutorDukelsky, Jorge
Fecha de publicación4-sep-2017
CitaciónAdvanced many-body and statistical methods in mesoscopic systems III (2017)
ResumenThe exact solution of the SU(2) pairing Hamiltonian with non-degenerate single particle orbits was introduced by Richardson in the early sixties. It passed largely unnoticed till it was rediscovered in recent years and widely applied to mesoscopic systems. In this talk I will review the wide class of exactly solvable pairing Hamiltonians that can be derived from the SU(2) Richardson-Gaudin (RG) integrable models. The rational family of RG models leads to s-wave pairing Hamiltonians whose exact wavefunction unveils the unique structure the Cooper pairs and shows how they evolve along the crossover from BCS to BEC. On the contrary, the hyperbolic family of RG models realizes p-wave pairing Hamiltonians with topological phases and quantum phase transitions, as well as more realistic separable pairing Hamiltonians for atomic nuclei. Then, I will show how the Richardson-Gaudin models could be extended to larger rank algebras like SO(5) and SO(8) to describe proton-neutron pairing Hamiltonians or SO(6) for color pairing. These Hamiltonians not only constitute excellent benchmark models to test many-body approximations, but they can also suggest ways to treat many-body correlations.
DescripciónBusteni, Romania, September 4 - 8, 2017 . -- https://www.theory.nipne.ro/Meso2017/
Aparece en las colecciones: (CFMAC-IEM) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.