English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/165960
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Exactly solvable proton-neutron pairing models

AutorDukelsky, Jorge
Fecha de publicación5-jun-2017
CitaciónProbing fundamental interactions by low energy excitations (2017)
ResumenThe exact solution of the SU(2) pairing Hamiltonian with non-degenerate single particle orbits was introduced by Richardson in the early sixties, although it was rediscovered an widely applied to mesoscopic systems, including the atomic nucleus, in recent years. Lately we have extended this family of exactly solvable models to include proton-neutron (p-n) pairing with T=1 isospin and with T=0,1 isospin. In this talk I will review the wide class of exactly solvable pairing Hamiltonians that can be derived from the SU(2) Richardson-Gaudin (RG) integrable models. The rational family of RG models leads to s-wave pairing Hamiltonians whose exact wavefunction unveils the unique structure the Cooper pairs and shows how they evolve along the crossover from BCS to BEC. On the contrary, the hyperbolic family of RG models realizes p-wave pairing Hamiltonians with topological phases and quantum phase transitions. Then, I will show how the Richardson-Gaudin models could be extended to larger rank algebras like SO(5) and SO(8) to describe proton-neutron pairing Hamiltonians or SO(6) for color pairing. These Hamiltonians not only constitute excellent benchmark models to test appropriate manybody approximations, but they can also suggest ways to treat quartet correlations.
DescripciónConferencia invitada. -- Royal Institute of Technology, Stockholm, Sweden, June 05-09, 2017. -- http://www.nuclear.kth.se/atp/
Aparece en las colecciones: (CFMAC-IEM) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.