English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/165062
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


Current challenges in plant eco-metabolomics

AuthorsPeters, Kristian; Worrich, Anja; Weinhold, Alexander; Alka, Oliver; Balcke, Gerd; Birkemeyer, Claudia; Bruelheide, Helge; Calf, Onno W.; Dietz, Sophie; Dührkop, Kai; Gaquerel, Emmanuel; Heinig, Uwe; Kücklich, Marlen; Macel, Mirka; Müller, Caroline; Poeschl, Yvonne; Pohnert, Georg; Ristok, Christian; Rodríguez Graña, Víctor Manuel ; Ruttkies, Christoph; Schuman, Meredith; Schweiger, Rabea; Shahaf, Nir; Steinbeck, Christoph; Tortosa Viqueira, María ; Treutler, Hendrik; Ueberschaar, Nico; Velasco Pazos, Pablo ; Weiß, Brigitte M.; Widdig, Anja; Neumann, Steffen; Dam, Nicole M. van
Issue Date6-May-2018
PublisherMultidisciplinary Digital Publishing Institute
CitationInternational Journal of Molecular Sciences 19 (5): 1385 (2018)
AbstractThe relatively new research discipline of Eco-Metabolomics is the application of metabolomics techniques to ecology with the aim to characterise biochemical interactions of organisms across different spatial and temporal scales. Metabolomics is an untargeted biochemical approach to measure many thousands of metabolites in different species, including plants and animals. Changes in metabolite concentrations can provide mechanistic evidence for biochemical processes that are relevant at ecological scales. These include physiological, phenotypic and morphological responses of plants and communities to environmental changes and also interactions with other organisms. Traditionally, research in biochemistry and ecology comes from two different directions and is performed at distinct spatiotemporal scales. Biochemical studies most often focus on intrinsic processes in individuals at physiological and cellular scales. Generally, they take a bottom-up approach scaling up cellular processes from spatiotemporally fine to coarser scales. Ecological studies usually focus on extrinsic processes acting upon organisms at population and community scales and typically study top-down and bottom-up processes in combination. Eco-Metabolomics is a transdisciplinary research discipline that links biochemistry and ecology and connects the distinct spatiotemporal scales. In this review, we focus on approaches to study chemical and biochemical interactions of plants at various ecological levels, mainly plant–organismal interactions, and discuss related examples from other domains. We present recent developments and highlight advancements in Eco-Metabolomics over the last decade from various angles. We further address the five key challenges: (1) complex experimental designs and large variation of metabolite profiles; (2) feature extraction; (3) metabolite identification; (4) statistical analyses; and (5) bioinformatics software tools and workflows. The presented solutions to these challenges will advance connecting the distinct spatiotemporal scales and bridging biochemistry and ecology.
Publisher version (URL)http://dx.doi.org/10.3390/ijms19051385
DOIhttp://dx.doi.org/doi: 10.3390/ijms19051385
Identifiersdoi: 10.3390/ijms19051385
Appears in Collections:(MBG) Artículos
Files in This Item:
File Description SizeFormat 
Peters_Current_challenges...pdf1,96 MBAdobe PDFThumbnail
Show full item record
Review this work

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.