English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/164820
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorGómez Rodríguez, Andréses_ES
dc.contributor.authorSánchez, Sandyes_ES
dc.contributor.authorCampoy Quiles, Marianoes_ES
dc.contributor.authorAbate, Antonioes_ES
dc.date.accessioned2018-05-15T10:58:46Z-
dc.date.available2018-05-15T10:58:46Z-
dc.date.issued2018-03-
dc.identifier.citationNano Energy 45: 94-100 (2018)es_ES
dc.identifier.issn2211-2855-
dc.identifier.urihttp://hdl.handle.net/10261/164820-
dc.description.abstractLead halide perovskites have recently raised as an easy to process and cost-effective photovoltaic material. However, stability issues have to be addressed to meet the market need for 25 years durable technology. The stability of the perovskite itself, as well as the stability of the perovskite embedded in a complete device under real working conditions, are a key challenge for perovskite solar cells. Within this study, we used Photoconductive Atomic Force Microscopy (pcAFM) and Photoluminescence imaging (PL) to investigate at the nanoscale level the degradation of the perovskite film under light and voltage stress. Then, we correlate the nanoscale pcAFM and PL analysis to the macroscopic device behaviour in similar ageing condition. We found that non-reversible performance losses in a complete device originate from degradation localised at the grain boundaries of the perovskite film. Interesting, within the bulk of the perovskite grains we observed fully reversible behaviours. We conclude that the grain boundaries are detrimental to the device stability and they need to be minimized or passivated to achieve fully stable perovskite solar cells even under anhydrous conditions.es_ES
dc.description.sponsorshipNFFA-Europe has received funding from the EU's H2020 framework programme for research and innovation under grant agreement n. 654360. ICMAB acknowledges financial support from the Spanish Ministry of Economy and Competitiveness, through the “Severo Ochoa” Programme for Centres of Excellence in R&D (SEV- 2015-0496) and projects ENE2015-68995-REDT and MAT2015-70850-P.es_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/654360es_ES
dc.relationMINECO/ICTI2013-2016/SEV-2015-0496es_ES
dc.relationMINECO/ICTI2013-2016/ENE2015-68995-REDTes_ES
dc.relationMINECO/ICTI2013-2016/MAT2015-70850-Pes_ES
dc.relation.isversionofPostprintes_ES
dc.rightsembargoedAccesses_ES
dc.subjectPerovskite solar celles_ES
dc.subjectPhotovoltaicses_ES
dc.subjectDegradationes_ES
dc.subjectSolar energyes_ES
dc.subjectAFMes_ES
dc.titleTopological distribution of reversible and non-reversible degradation in perovskite solar cellses_ES
dc.typeartículoes_ES
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.nanoen.2017.12.040es_ES
dc.identifier.e-issn2211-3282-
dc.embargo.terms2020-03-31es_ES
dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.contributor.funderEuropean Commissiones_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
Appears in Collections:(ICMAB) Artículos
Files in This Item:
File Description SizeFormat 
Gomez_Nanoenergy_2018_postprint.pdf Embargoed until March 31, 2020991,24 kBAdobe PDFThumbnail
View/Open    Request a copy
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.