English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/164806
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Evolutionary Synthesis of Stable Normative Systems

AutorMorales, Javier; Wooldridge, Michael; Rodríguez-Aguilar, Juan Antonio ; López-Sánchez, Maite
Palabras claveEvolutionary game theory
Normative systems
Norm synthesis
Norms
Evolutionary algorithm
Fecha de publicación8-may-2017
EditorInternational Foundation for Autonomous Agents and Multiagent Systems
CitaciónProceedings of the16th International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2017: 1646- 1648 (2017)
ResumenNormative systems are a widely used framework to coordi-nate interdependent activities in multi-agent systems. Most research in this area has focused on how to compute norma-tive systems that effectively accomplish a coordination task, as well as additional criteria such as synthesising norms that do not over-regulate a system, and the emergence of norms that remain stable over time. We introduce a framework for the synthesis of stable normative systems that are sufficient and necessary for coordination. Our approach is based on ideas from evolutionary game theory. We simulate multi-agent systems in which useful norms are more likely to prosper than useless norms. We empirically show the effectiveness of our approach in a simulated traffic domain. © Copyright 2017, International Foundation for Autonomous Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.
URIhttp://hdl.handle.net/10261/164806
Identificadoresissn: 15488403
isbn: 978-151085507-6
Aparece en las colecciones: (IIIA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.