Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/164755
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Title

Hidden MHC genetic diversity in the Iberian ibex (Capra pyrenaica)

AuthorsAngelone-Alasaad, Samer; Jowers, Michael J.; Molinar Min, Anna Rita; Fandos, Paulino; Prieto, Paloma; Pasquetti, Mario; Cano-Manuel, Francisco J.; Mentaberre, Gregorio; Olvera, Jorge R. L.; Ráez-Bravo, Arián; Espinosa, José; Pérez, Jesús M.; Soriguer, Ramón C. CSIC ORCID ; Rossi, Luca; Granados, José E.
Issue Date8-May-2018
PublisherBioMed Central
CitationBMC Genetics 19(1): 28 (2018)
AbstractAbstract Background Defining hidden genetic diversity within species is of great significance when attempting to maintain the evolutionary potential of natural populations and conduct appropriate management. Our hypothesis is that isolated (and eventually small) wild animal populations hide unexpected genetic diversity due to their maintenance of ancient polymorphisms or introgressions. Results We tested this hypothesis using the Iberian ibex (Capra pyrenaica) as an example. Previous studies based on large sample sizes taken from its principal populations have revealed that the Iberian ibex has a remarkably small MHC DRB1 diversity (only six remnant alleles) as a result of recent population bottlenecks and a marked demographic decline that has led to the extinction of two recognized subspecies. Extending on the geographic range to include non-studied isolated Iberian ibex populations, we sequenced a new MHC DRB1 in what seemed three small isolated populations in Southern Spain (n = 132). The findings indicate a higher genetic diversity than previously reported in this important gene. The newly discovered allele, MHC DRB1*7, is identical to one reported in the domestic goat C. aegagrus hircus. Whether or not this is the result of ancient polymorphisms maintained by balancing selection or, alternatively, introgressions from domestic goats through hybridization needs to be clarified in future studies. However, hybridization between Iberian ibex and domestic goats has been reported in Spain and the fact that the newly discovered allele is only present in one of the small isolated populations and not in the others suggests introgression. The new discovered allele is not expected to increase fitness in C. pyrenaica since it generates the same protein as the existing MHC DRB1*6. Analysis of a microsatellite locus (OLADRB1) near the new MHC DRB1*7 gene reveals a linkage disequilibrium between these two loci. The allele OLADRB1, 187 bp in length, was unambiguously linked to the MHC DRB1*7 allele. This enabled us to perform a DRB-STR matching method for the recently discovered MHC allele. Conclusions This finding is critical for the conservation of the Iberian ibex since it directly affects the identification of the units of this species that should be managed and conserved separately (Evolutionarily Significant Units).
Publisher version (URL)https://doi.org/10.1186/s12863-018-0616-9
URIhttp://hdl.handle.net/10261/164755
DOI10.1186/s12863-018-0616-9
Appears in Collections:(EBD) Artículos

Files in This Item:
File Description SizeFormat
12863_2018_Article_616.pdf1,15 MBAdobe PDFThumbnail
View/Open
Show full item record
Review this work

WEB OF SCIENCETM
Citations

4
checked on Nov 23, 2021

Google ScholarTM

Check

Altmetric

Dimensions


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.