Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/164502
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Título

Strain Control of Exciton–Phonon Coupling in Atomically Thin Semiconductors

AutorNiehues, Iris; Castellanos-Gómez, Andrés CSIC ORCID ; Bratschitsch, Rudolf
Palabras claveExcitons
Exciton−phonon coupling
Line width
Strain
Transition metal dichalcogenide
Fecha de publicación1-feb-2018
EditorAmerican Chemical Society
CitaciónNano Letters 18(3): 1751-1757 (2018)
ResumenSemiconducting transition metal dichalcogenide (TMDC) monolayers have exceptional physical properties. They show bright photoluminescence due to their unique band structure and absorb more than 10% of the light at their excitonic resonances despite their atomic thickness. At room temperature, the width of the exciton transitions is governed by the exciton–phonon interaction leading to strongly asymmetric line shapes. TMDC monolayers are also extremely flexible, sustaining mechanical strain of about 10% without breaking. The excitonic properties strongly depend on strain. For example, exciton energies of TMDC monolayers significantly redshift under uniaxial tensile strain. Here, we demonstrate that the width and the asymmetric line shape of excitonic resonances in TMDC monolayers can be controlled with applied strain. We measure photoluminescence and absorption spectra of the A exciton in monolayer MoSe2, WSe2, WS2, and MoS2 under uniaxial tensile strain. We find that the A exciton substantially narrows and becomes more symmetric for the selenium-based monolayer materials, while no change is observed for atomically thin WS2. For MoS2 monolayers, the line width increases. These effects are due to a modified exciton–phonon coupling at increasing strain levels because of changes in the electronic band structure of the respective monolayer materials. This interpretation based on steady-state experiments is corroborated by time-resolved photoluminescence measurements. Our results demonstrate that moderate strain values on the order of only 1% are already sufficient to globally tune the exciton–phonon interaction in TMDC monolayers and hold the promise for controlling the coupling on the nanoscale.
DescripciónNiehues, Iris et al.
Versión del editorhttp://dx.doi.org/10.1021/acs.nanolett.7b04868
URIhttp://hdl.handle.net/10261/164502
DOI10.1021/acs.nanolett.7b04868
ISSN1530-6984
E-ISSN1530-6992
Aparece en las colecciones: (ICMM) Artículos




Ficheros en este ítem:
Fichero Descripción Tamaño Formato
strain_manuskript_vDIGITALCSIC.pdf828,79 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo

CORE Recommender

SCOPUSTM   
Citations

179
checked on 24-abr-2024

WEB OF SCIENCETM
Citations

172
checked on 26-feb-2024

Page view(s)

329
checked on 23-abr-2024

Download(s)

903
checked on 23-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.