English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/163957
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Campo DC Valor Lengua/Idioma
dc.contributor.authorPita, Marcoses_ES
dc.contributor.authorGutiérrez Sánchez, Cristinaes_ES
dc.contributor.authorLacey, Antonio L. dees_ES
dc.date.accessioned2018-04-23T06:46:46Z-
dc.date.available2018-04-23T06:46:46Z-
dc.date.issued2012-09-
dc.identifier.citation13th Trends in Nanotechnology International Conference (2012)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/163957-
dc.descriptionTrabajo presentado en la 13th edition of Trends in Nanotechnology International Conference (TNT2012), celebrada en Madrid del 10 al 14 de septiembre de 2012.es_ES
dc.description.abstractFungal laccases are one of the best candidates for enzymatic biofuel cell cathodes due to its ability to reduce O2 directly to H2 O at high potentials; laccases are also suitable for direct electron transfer when appropriately wired toward different electroactive surfaces such as gold or graphite. However, laccase faces several hindering conditions when taking to many in vivo-like environments, being the most relevant chloride inhibition and the functional pH. Chloride anions are a reversible inhibitor of laccase and are present in most biological fluids. Additionally, the typically acidic pH-optima for laccase performance take any laccase-modified electrode out of range for many natural fluids. This presentation will show strategies to improve laccase performance under these nonfavoured environments. It has been shown that specific orientation of laccase for DET can reduce this inhibition source when immobilized on a low-density graphite (LDG) electrode1 and how to extend this immobilization method to gold planar electrodes2 . We will show the improvement brought to current density and chloride resistance by combining a LDG electrode with gold nanoparticles. The limitations brought by the use of neutral pH can be addressed by generation of a local acidic pH environment. This has been achieved by inserting the laccase electrode in a magnetic ring that allows the deposition of magnetic nanoparticles carrying another enzyme able to acidify the environment.3 For conceptual purposes we have used glucose oxidase (GOx) to produce a gluconic-acid environment, managing to lower pH 2 units while keeping the bulk pH neutral and therefore allowing laccase to work. Catalase was present for oxygen-regeneration purposes.es_ES
dc.language.isoenges_ES
dc.rightsclosedAccesses_ES
dc.titleImproving the Direct Electron Transfer Efficiency in Laccase Electrodes for Biofuel Cell Cathodic Reactionses_ES
dc.typeComunicación de congresoes_ES
dc.description.peerreviewedNoes_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
Aparece en las colecciones: (ICP) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.