English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/163558
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

3-D Characterization of Vineyards Using a Novel UAV Imagery-Based OBIA Procedure for Precision Viticulture Applications

AutorCastro, Ana Isabel de ; Jiménez-Brenes, Francisco Manuel ; Torres-Sánchez, Jorge ; Peña, José María; Borra-Serrano, Irene; López Granados, Francisca
Palabras claveDigital surface model
Image classification
Remote sensing
Precision agriculture
Low cost RGB camera
Grapevine canopy mapping
Site-specific treatments
Fecha de publicación10-abr-2018
EditorMultidisciplinary Digital Publishing Institute
CitaciónRemote Sensing 10(4): 584 (2018)
ResumenPrecision viticulture has arisen in recent years as a new approach in grape production. It is based on assessing field spatial variability and implementing site-specific management strategies, which can require georeferenced information of the three dimensional (3D) grapevine canopy structure as one of the input data. The 3D structure of vineyard fields can be generated applying photogrammetric techniques to aerial images collected with Unmanned Aerial Vehicles (UAVs), although processing the large amount of crop data embedded in 3D models is currently a bottleneck of this technology. To solve this limitation, a novel and robust object-based image analysis (OBIA) procedure based on Digital Surface Model (DSM) was developed for 3D grapevine characterization. The significance of this work relies on the developed OBIA algorithm which is fully automatic and self-adaptive to different crop-field conditions, classifying grapevines, and row gap (missing vine plants), and computing vine dimensions without any user intervention. The results obtained in three testing fields on two different dates showed high accuracy in the classification of grapevine area and row gaps, as well as minor errors in the estimates of grapevine height. In addition, this algorithm computed the position, projected area, and volume of every grapevine in the field, which increases the potential of this UAV- and OBIA-based technology as a tool for site-specific crop management applications.
Versión del editorhttp://dx.doi.org/10.3390/rs10040584
URIhttp://hdl.handle.net/10261/163558
DOI10.3390/rs10040584
E-ISSN2072-4292
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
vineyards_Castro.pdf49,68 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.