Please use this identifier to cite or link to this item:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

A new facet of Vitamin B12: Gene regulation by cobalamin-based photoreceptors

AuthorsPadmanabhan, Subramanian CSIC ORCID; Jost, M.; Drennan, C.L.; Elías-Arnanz, Montserrat
Issue Date2017
PublisherAnnual Reviews
CitationAnnual Review of Biochemistry 86: 485- 514 (2017)
AbstractLiving organisms sense and respond to light, a crucial environmental factor, using photoreceptors, which rely on bound chromophores such as retinal, flavins, or linear tetrapyrroles for light sensing. The discovery of photoreceptors that sense light using 5′-deoxyadenosylcobalamin, a form of vitamin B12 that is best known as an enzyme cofactor, has expanded the number of known photoreceptor families and unveiled a new biological role of this vitamin. The prototype of these B12-dependent photoreceptors, the transcriptional repressor CarH, is widespread in bacteria and mediates light-dependent gene regulation in a photoprotective cellular response. CarH activity as a transcription factor relies on the modulation of its oligomeric state by 5′-deoxyadenosylcobalamin and light. This review surveys current knowledge about these B12-dependent photoreceptors, their distribution and mode of action, and the structural and photochemical basis of how they orchestrate signal transduction and control gene expression.
Identifiersdoi: 10.1146/annurev-biochem-061516-044500
issn: 1545-4509
Appears in Collections:(IQFR) Artículos

Files in This Item:
File Description SizeFormat
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Google ScholarTM




WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.