English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/16321
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
 |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Quantum Einstein–Rosen waves: coherent states and n-point functions

AutorBarbero González, Jesús Fernando ; Garay Elizondo, Iñaki ; Villaseñor, Eduardo J. S.
Palabras clave[PACS] Canonical quantization
[PACS] Lower dimensional models; minisuperspace models
[PACS] Quantum fields in curved spacetime
Fecha de publicación30-sep-2008
EditorInstitute of Physics Publishing
CitaciónClassical and Quantum Gravity, 25 (20): 205013 (2008)
ResumenWe discuss two different types of issues concerning the quantization of Einstein–Rosen waves. First we study in detail the possibility of using the coherent states corresponding to the dynamics of the auxiliary, freeHamiltonian appearing in the description of the model to study the full dynamics of the system. For time periods of arbitrary length we show that this is only possible for states that are close, in a precise mathematical sense, to the vacuum. We do this by comparing the quantum evolutions defined by the auxiliary and physical Hamiltonians on the class of coherent states. In the second part of the paper we study the structure of n-point functions. As we will show their detailed behavior differs from that corresponding to standard perturbative quantum field theories. We take this as a manifestation of the fact that the correct approximation scheme for physically interesting objects in these models does not lead to a power series expansion in the relevant coupling constant but to a more complicated asymptotic behavior.
Descripción20 pags. ; appendix
Versión del editorhttp://dx.doi.org/doi:10.1088/0264-9381/25/20/205013
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.