English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/163023
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Automating Decision Making to Help Establish Norm-Based Regulations

AutorLópez-Sánchez, Maite ; Serramia, Marc ; Rodríguez-Aguilar, Juan Antonio ; Morales, Javier; Wooldridge, Michael
Palabras claveOptimisation
Policy making
Norm decision making
Normative systems
Fecha de publicación8-may-2017
EditorInternational Foundation for Autonomous Agents and Multiagent Systems
CitaciónAAMAS '17 Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems: 1613-1615 (2017)
ResumenNorms have been extensively proposed as coordination mechanisms for both agent and human societies. Nevertheless, choosing the norms to regulate a society is by no means straightforward. The reasons are twofold. First, the norms to choose from may not be independent (i.e, they can be related to each other). Second, different preference criteria may be applied when choosing the norms to enact. On the one hand, this paper considers norm representation power and cost as alternative preference criteria. On the other hand, it identifies three different norm relationships --namely, generalisation, exclusivity, and substitutability. We show that the decisionmaking problem faced by policy makers can be encoded as a linear program, and hence solved with the aid of state-of-the-art solvers. Copyright © 2018 ACM, Inc.
URIhttp://hdl.handle.net/10261/163023
Aparece en las colecciones: (IIIA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.