English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/163022
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorAlsinet, Teresa-
dc.contributor.authorArgelich, Josep-
dc.contributor.authorBejar, Ramon-
dc.contributor.authorEsteva, Francesc-
dc.contributor.authorGodo, Lluis-
dc.date.accessioned2018-03-28T12:03:07Z-
dc.date.available2018-03-28T12:03:07Z-
dc.date.issued2017-08-20-
dc.identifieruri: http://homepages.inf.ed.ac.uk/vbelle/workshops/lfu17/proc.pdf-
dc.identifier.citationIJCAI-17 Workshop on Logical Foundations for Uncertainty and Machine Learning (LFU-2017): 3- 8 (2017)-
dc.identifier.urihttp://hdl.handle.net/10261/163022-
dc.description.abstractIn a recent work some of the authors have developed an argumentative approach for discovering relevant opinions in Twitter discussions with probabilistic valued relationships. Given a Twitter discussion, the system builds an argument graph where each node denotes a tweet and each edge denotes a criticism relationship between a pair of tweets of the discussion. Relationships between tweets are associated with a probability value, indicating the uncertainty that the relationships hold. In this work we introduce and investigate a natural extension of the representation model, referred as probabilistic author-centered model, in which tweets within a discussion are grouped by authors, in such a way that tweets of a same author describe his/her opinion in the discussion and are rep- resented with a single node in the graph, and criticism relationships denote controversies between opinions of Twitter users in the discussion. In this new model, the interactions between authors can give rise to circular criticism relationships, and the probability of one opinion criticizing another has to be evaluated from the probabilities of criticism among the tweets that compose both opinions.-
dc.description.sponsorshipThis work was partially funded by the Spanish MICINN Projects TIN2015-71799-C2-1-P and TIN2015-71799-C2-2-P -
dc.publisherAAAI Press-
dc.relationMINECO/TIN2015-71799-C2-1-P; MINECO/TIN2015-71799-C2-2-P-
dc.rightsclosedAccess-
dc.subjectAuthor-centered model-
dc.subjectArgument graph-
dc.subjectTwitter discussions-
dc.titleA probabilistic author-centered model for Twitter discussions-
dc.typecomunicación de congreso-
dc.date.updated2018-03-28T12:03:07Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderMinisterio de Ciencia e Innovación (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004837es_ES
Appears in Collections:(IIIA) Comunicaciones congresos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.