English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/163016
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorJiang, Hua-
dc.contributor.authorLi, Chumin-
dc.contributor.authorManyà, Felip-
dc.date.accessioned2018-03-28T11:31:28Z-
dc.date.available2018-03-28T11:31:28Z-
dc.date.issued2017-02-04-
dc.identifierisbn: 978-1-57735-780-3-
dc.identifieruri: https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14370-
dc.identifier.citationProceedings of the Thirty-First AAAI Conference on Artificial Intelligence and the Twenty-Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 2017: 830- 838 (2017)-
dc.identifier.urihttp://hdl.handle.net/10261/163016-
dc.description.abstractWe describe an exact branch-and-bound algorithm for the maximum weight clique problem (MWC), called WLMC, that is especially suited for large vertex-weighted graphs. WLMC incorporates two original contributions: a preprocessing to derive an initial vertex ordering and to reduce the size of the graph, and incremental vertex-weight splitting to reduce the number of branches in the search space. Experiments on representative large graphs from real-world applications show that WLMC greatly outperforms relevant exact and heuristic MWC algorithms, and refute the prevailing hypothesis that exact MWC algorithms are less adequate for large graphs than heuristic algorithms. Copyright © 2017, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.-
dc.description.sponsorshipThis work is supported by NSFC Grants No. 61272014, No.61370183, No. 61472147 and No. 61370184, the MeCS platform of the University of Picardie Jules Verne and the HPC platform of Jianghan Univeristy. The third author was supported by Mobility Grant PRX16/00215 of the Ministerio de Educación, Cultura y Deporte, the Generalitat de Catalunya grant AGAUR 2014-SGR-118, and the MINECO-FEDER project RASO TIN2015-71799-C2-1-P-
dc.publisherAAAI Press-
dc.relationMINECO/ICTI2013-2016/TIN2015-71799-C2-1-P-
dc.rightsclosedAccess-
dc.subjectIncremental search-
dc.subjectExactaAlgorithm-
dc.subjectBranch-and-bound-
dc.subjectMaximum weight clique problem-
dc.titleAn Exact Algorithm for the Maximum Weight Clique Problem in Large Graphs-
dc.typecomunicación de congreso-
dc.date.updated2018-03-28T11:31:29Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderGeneralitat de Catalunya-
dc.contributor.funderMinisterio de Educación, Cultura y Deporte (España)-
dc.contributor.funderEuropean Commission-
dc.contributor.funderNational Natural Science Foundation of China-
dc.contributor.funderUniversité de Picardie Jules Verne (France)-
dc.contributor.funderJiangnan University-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003176es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001809es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100002809es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004028es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
Appears in Collections:(IIIA) Comunicaciones congresos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.