Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/162827
Share/Export:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
DC FieldValueLanguage
dc.contributor.authorGonzález Carmona, José-
dc.contributor.authorMolina, Rafael A.-
dc.date.accessioned2018-03-23T11:33:35Z-
dc.date.available2018-03-23T11:33:35Z-
dc.date.issued2017-07-31-
dc.identifierdoi: 10.1103/PhysRevB.96.045437-
dc.identifierissn: 2469-9969-
dc.identifier.citationPhysical Review B 96: 045437 (2017)-
dc.identifier.urihttp://hdl.handle.net/10261/162827-
dc.description12 pags., 11 figs.-
dc.description.abstractWe investigate the topological protection of surface states in Weyl and nodal-line semimetals by characterizing them as evanescent states when the band structure is extended to complex momenta. We find in this way a sequence of exceptional points - that is, branch points with zero energy in the complex spectrum - allowing us to identify the set of surface states with complex momentum signaling the decay into the 3D semimetal. From this point of view, Weyl and nodal-line semimetals can be classified in two types depending on the way surface states decay. Type A semimetals have surface states with smaller penetration length and oscillating decay while type B semimetals have longer simple exponential decays. The difference between both types reflects in the way the branch cuts in the spectrum accommodate in the complex plane. The stability of the surface states stems in this approach from the complex structure that develops around the exceptional points, with a topological protection which is based on the fact that the branch cuts cannot be closed by small perturbations. We check this property when nodal-line semimetals are placed under circularly polarized light, where we observe that the exceptional points survive the effect of such a perturbation, though appropriate boundary conditions for zero-energy surface states cannot be satisfied in general due to the breakdown of time-reversal invariance by the radiation field.-
dc.description.sponsorshipWe acknowledge financial support through Spanish Grants MINECO/FEDER No. FIS2015-63770-P and No. FIS2014- 57432-P.-
dc.publisherAmerican Physical Society-
dc.relationMINECO/ICTI2013-2016/FIS2015-63770-P-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.titleTopological protection from exceptional points in Weyl and nodal-line semimetals-
dc.typeartículo-
dc.identifier.doi10.1103/PhysRevB.96.045437-
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevB.96.045437-
dc.date.updated2018-03-23T11:33:35Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairetypeartículo-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
Appears in Collections:(CFMAC-IEM) Artículos
Files in This Item:
File Description SizeFormat
Topological protection.pdf2,38 MBAdobe PDFThumbnail
View/Open
Show simple item record

SCOPUSTM   
Citations

52
checked on Jan 17, 2022

WEB OF SCIENCETM
Citations

50
checked on Jan 21, 2022

Page view(s)

230
checked on Jan 23, 2022

Download(s)

436
checked on Jan 23, 2022

Google ScholarTM

Check

Altmetric

Dimensions


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.