Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/162368
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorLanza, Val F.es_ES
dc.contributor.authorBaquero, Fernando-
dc.contributor.authorMartínez, José L.-
dc.contributor.authorRamos-Ruiz, Ricardo-
dc.contributor.authorGonzalez-Zorn, B.-
dc.contributor.authorAndremont, Antoine-
dc.contributor.authorSánchez-Valenzuela, Antonio-
dc.contributor.authorDusko Ehrlich, Stanislav-
dc.contributor.authorKennedy, Sean-
dc.contributor.authorRuppé, Etienne-
dc.contributor.authorSchaik, Willem van-
dc.contributor.authorWillems, Rob J.-
dc.contributor.authorCruz, Fernando de la-
dc.contributor.authorCoque, Teresa M.-
dc.date.accessioned2018-03-18T15:56:01Z-
dc.date.available2018-03-18T15:56:01Z-
dc.date.issued2018-
dc.identifier.citationMicrobiome 6(1): 11 (2018)es_ES
dc.identifier.urihttp://hdl.handle.net/10261/162368-
dc.description.abstract[Background]: Antimicrobial resistance is a major global health challenge. Metagenomics allows analyzing the presence and dynamics of “resistomes” (the ensemble of genes encoding antimicrobial resistance in a given microbiome) in disparate microbial ecosystems. However, the low sensitivity and specificity of available metagenomic methods preclude the detection of minority populations (often present below their detection threshold) and/or the identification of allelic variants that differ in the resulting phenotype. Here, we describe a novel strategy that combines targeted metagenomics using last generation in-solution capture platforms, with novel bioinformatics tools to establish a standardized framework that allows both quantitative and qualitative analyses of resistomes. [Methods]: We developed ResCap, a targeted sequence capture platform based on SeqCapEZ (NimbleGene) technology, which includes probes for 8667 canonical resistance genes (7963 antibiotic resistance genes and 704 genes conferring resistance to metals or biocides), and 2517 relaxase genes (plasmid markers) and 78,600 genes homologous to the previous identified targets (47,806 for antibiotics and 30,794 for biocides or metals). Its performance was compared with metagenomic shotgun sequencing (MSS) for 17 fecal samples (9 humans, 8 swine). ResCap significantly improves MSS to detect “gene abundance” (from 2.0 to 83.2%) and “gene diversity” (26 versus 14.9 genes unequivocally detected per sample per million of reads; the number of reads unequivocally mapped increasing up to 300-fold by using ResCap), which were calculated using novel bioinformatic tools. ResCap also facilitated the analysis of novel genes potentially involved in the resistance to antibiotics, metals, biocides, or any combination thereof. [Conclusions]: ResCap, the first targeted sequence capture, specifically developed to analyze resistomes, greatly enhances the sensitivity and specificity of available metagenomic methods and offers the possibility to analyze genes related to the selection and transfer of antimicrobial resistance (biocides, heavy metals, plasmids). The model opens the possibility to study other complex microbial systems in which minority populations play a relevant role.es_ES
dc.description.sponsorshipThis study was supported by the European Commission, Seven Framework Program (EVOTARFP7-HEALTH-282004 for VFL, FB, JLM, AA, DE, ER, RJLW, WvS, FdlC, and TMC), the Joint Programming Initiative in Antimicrobial Resistance (JPIAMR Third call, STARCS, JPIAMR2016-AC16/00039 to TMC, RJLW, WvS), the Joint Programming Initiative in Water (JPI Water StARE JPIW2013-089-C02-01 to JLM) and the Ministry of Economy and Competitiveness of Spain (BIO2014-54507-R to JLM, and PLASWIRES-612146/FP7-ICT-2013-10 and BFU2014-55534-C2-1-P for FdlC). The authors also acknowledge the European Development Regional Fund “A way to achieve Europe” (ERDF) for co-founding the Spanish R&D National Plan 2012-2019 (BIO2014-54507-R to JLM, PI15-0512 to TMC, PI15-00818 to FB, and BFU2014-55534-C2-1-P to FdlC), CIBER (CIBER in Epidemiology and Public Health, CIBERESP; CB06/02/0053 to FB), the Spanish Network for Research on Infectious Diseases (REIPI RD12/0015 to JLM) and the Regional Government of Madrid (InGeMICS- B2017/BMD-3691). Val F. Lanza was further funded by a Research Award Grant 2016 of the European Society for Clinical Microbiology and Infectious Diseases (ESCMID). Additional funding was from the Metagenopolis grant ANR-11-DPBS-0001 to DE.-
dc.language.isoenges_ES
dc.publisherBioMed Central-
dc.publisherSpringer Nature-
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/282004-
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/612146-
dc.relationB2017/BMD-3691/InGeMICS-
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIO2014-54507-R-
dc.relationinfo:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BFU2014-55534-C2-1-P-
dc.relation.isversionofPublisher's versiones_ES
dc.rightsopenAccesses_ES
dc.titleIn-depth resistome analysis by targeted metagenomicses_ES
dc.typeartículoes_ES
dc.identifier.doi10.1186/s40168-017-0387-y-
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttps://doi.org/10.1186/s40168-017-0387-yes_ES
dc.identifier.e-issn2049-2618-
dc.rights.licensehttp://creativecommons.org/licenses/by/4.0/-
dc.contributor.funderEuropean Commission-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderInstituto de Salud Carlos III-
dc.contributor.funderComunidad de Madrid-
dc.contributor.funderEuropean Society of Clinical Microbiology and Infectious Diseases-
dc.contributor.funderAgence Nationale de la Recherche (France)-
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001665es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001704es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100004587es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100012818es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.pmid29335005-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairetypeartículo-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.languageiso639-1en-
Aparece en las colecciones: (CNB) Artículos
(IBBTEC) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Microbiome.pdfArticulo2,33 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

PubMed Central
Citations

55
checked on 22-mar-2024

SCOPUSTM   
Citations

94
checked on 16-abr-2024

WEB OF SCIENCETM
Citations

81
checked on 27-feb-2024

Page view(s)

366
checked on 19-abr-2024

Download(s)

224
checked on 19-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


Artículos relacionados:


Este item está licenciado bajo una Licencia Creative Commons Creative Commons