English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/162109
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Title

How rifting and spreading center interaction created the architecture of the South China Sea

AuthorsCameselle, Alejandra L. ; Ranero, César R. ; Franke, Dieter; Barckhausen, Udo
Issue Date18-Apr-2016
PublisherEuropean Geosciences Union
CitationGeophysical Research Abstracts 18: EGU2016-16229 (2016)
AbstractRecent advances in understanding the formation of rifted continental margins suggest a wider range of structural evolution that challenges the classical extensional models. State-of-the-art of processing techniques - including multiple attenuation by both radon filtering and wave-equation-based surface-related multiple elimination and time migration - have been used to reprocess regional multichannel seismic profiles from the NW, SW and E subbasins of the South China Sea. The resulting seismic images show the geometry and crustal architecture of the rifted margin. A range of features including post-rift and syn-rift sediments, the structure of fault-bounded basement blocks, intra-basement fault reflections, and crust-mantle boundary reflections are visible in the images. Differences in crustal thickness and its lateral variations, internal basement reflectivity, morphology of the top of the basement, faulting style, fault-block geometry, and geometry of overlying sediments permit to distinguish the continental and oceanic domains. The improved resolution of the images allows interpreting the relationship between the changes in tectonic structure and crustal thickness as deformation focused across the ocean continent boundary (COB). The structure, extension and location of the COB has been used to study the role of strain localization throughout the rift history. The clear definition of the COB and high-quality images of the crustal structure support that rifting was largely a-magmatic, but that seafloor spreading occurred abruptly after break up. The regional character of the seismic lines - crossing over the entire basin - permits to study the symmetry/asymmetry of conjugated margins, and to study the processes controlling their contrasting geometry and crustal architecture. The COB can be interpreted in seismic profiles in both conjugated margins of the subbasins. The several transects along the strike of the margins provide the variation of crustal structure needed to understand the temporal and spatial evolution of rifting as a 3D process
DescriptionEuropean Geosciences Union General Assembly 2016 (EGU2016), 17-22 April 2016, Vienna, Austria.-- 1 page
Publisher version (URL)https://meetingorganizer.copernicus.org/EGU2016/posters/20504
URIhttp://hdl.handle.net/10261/162109
Identifiersissn: 1607-7962
Appears in Collections:(ICM) Comunicaciones congresos
Files in This Item:
File Description SizeFormat 
Cameselle_et_al_2016.pdf15,6 kBAdobe PDFThumbnail
View/Open
Show full item record
Review this work
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.