English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/161882
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Gene expression models based on a reference laboratory strain are poor predictors of Mycobacterium tuberculosis complex transcriptional diversity

AutorChiner-Oms, Álvaro; González-Candelas, Fernando; Comas, Iñaki
Fecha de publicación28-feb-2018
EditorNature Publishing Group
CitaciónScientific Reports 8(1):3813 (2018)
ResumenEvery year, species of the Mycobacterium tuberculosis complex (MTBC) kill more people than any other infectious disease caused by a single agent. As a consequence of its global distribution and parallel evolution with the human host the bacteria is not genetically homogeneous. The observed genetic heterogeneity has relevance at different phenotypic levels, from gene expression to epidemiological dynamics. However, current systems biology datasets have focused on the laboratory reference strain H37Rv. By using large expression datasets testing the role of almost two hundred transcription factors, we have constructed computational models to grab the expression dynamics of Mycobacterium tuberculosis H37Rv genes. However, we have found that many of those transcription factors are deleted or likely dysfunctional across strains of the MTBC. As a result, we failed to predict expression changes in strains with a different genetic background when compared with experimental data. These results highlight the importance of designing systems biology approaches that take into account the genetic diversity of tubercle bacilli, or any other pathogen, if we want to identify universal targets for vaccines, diagnostics and treatments.
Descripción13 Páginas, 7 figuras . Contiene información suplementaria en : 10.1038/s41598-018-22237-5
Versión del editorhttp://dx.doi.org/10.1038/s41598-018-22237-5
URIhttp://hdl.handle.net/10261/161882
DOI10.1038/s41598-018-22237-5
E-ISSN2045-2322
Aparece en las colecciones: (IBV) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
2018_Scientific Reports_Article_22237.pdf3,16 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.