Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/161003
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorGenç, Aziz-
dc.contributor.authorPatarroyo, Javier-
dc.contributor.authorSancho-Parramon, Jordi-
dc.contributor.authorGonzález, Edgar-
dc.contributor.authorBastús, Neus G.-
dc.contributor.authorDunin-Borkowski, Rafal E.-
dc.contributor.authorPuntes, Víctor F.-
dc.contributor.authorArbiol, Jordi-
dc.date.accessioned2018-02-20T11:08:43Z-
dc.date.available2018-02-20T11:08:43Z-
dc.date.issued2016-
dc.identifier.urihttp://hdl.handle.net/10261/161003-
dc.descriptionTrabajo presentado al SPIE Photonics West, celebrado en San Francisco, California (USA) del 13 al 18 de febrero de 2016.-- et al.-
dc.description.abstractComplex metal nanoparticles offer a great playground for plasmonic nanoengineering, where it is possible to cover plasmon resonances from ultraviolet to near infrared by modifying the morphologies from solid nanocubes to nanoframes, multiwalled hollow nanoboxes or even nanotubes with hybrid (alternating solid and hollow) structures. We experimentally show that structural modifications, i.e. void size and final morphology, are the dominant determinants for the final plasmonic properties, while compositional variations allow us to get a fine tuning. EELS mappings of localized surface plasmon resonances (LSPRs) reveal an enhanced plasmon field inside the voids of hollow AuAg nanostructures along with a more homogeneous distributions of the plasmon fields around the nanostructures. With the present methodology and the appropriate samples we are able to compare the effects of hybridization at the nanoscale in hollow nanostructures. Boundary element method (BEM) simulations also reveal the effects of structural nanoengineering on plasmonic properties of hollow metal nanostructures. Possibility of tuning the LSPR properties of hollow metal nanostructures in a wide range of energy by modifying the void size/shell thickness is shown by BEM simulations, which reveals that void size is the dominant factor for tuning the LSPRs. As a proof of concept for enhanced plasmonic properties, we show effective label free sensing of bovine serum albumin (BSA) with some of our hollow nanostructures. In addition, the different plasmonic modes observed have also been studied and mapped in 3D.-
dc.publisherCSIC-ICN Centro de Investigación en Nanociencia y Nanotecnología (CIN2)-
dc.rightsopenAccess-
dc.titleHollow metal nanostructures for enhanced plasmonics-
dc.typepresentación-
dc.date.updated2018-02-20T11:08:43Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.relation.csic-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.openairetypepresentación-
Aparece en las colecciones: (ICMAB) Comunicaciones congresos
(CIN2) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Hollowmetal.mp497,92 MBUnknownVisualizar/Abrir
Show simple item record

CORE Recommender

Page view(s)

199
checked on 24-abr-2024

Download(s)

7
checked on 24-abr-2024

Google ScholarTM

Check


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.