English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/16041
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Citado 20 veces en Web of Knowledge®  |  Pub MebCentral Ver citas en PubMed Central  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Evaluation of extracted organic carbon and microbial biomass as stability parameters in ligno-cellulosic waste composts

AutorMondini, C.; Sánchez-Monedero, Miguel Ángel ; Sinicco, T.; Leita, L.
Palabras claveWaste Management
Organic Carbon
Microbial Biomass
Fecha de publicación27-oct-2006
EditorAmerican Society of Agronomy
CitaciónJournal of Environmental Quality 35: 2313-2320 (2006)
ResumenExtracted organic C and microbial biomass were evaluated as stability parameters in 3 different ligno-cellulosic waste composts. Organic C was extracted by both water and alkali and further separated in humic-like carbon (HLC) and nonhumic carbon (NHC). Conventional humification parameters, such as humification index and degree of humification were calculated from NHC and HLC. Microbial biomass carbon (BC) was determined as an indicator of the degree of biochemical transformation, whereas ninhydrin reactive N (BNIN) was measured to obtain the stability parameter BNIN/NTOT (NTOT, total N). The water-extracted organic C did not provide reliable information on the transformations underwent by the ligno-cellulosic wastes during composting, since its content remained almost unaltered during the whole process. In contrast, parameters based on the alkali-extracted organic C and microbial biomass clearly reflected organic matter (OM) changes during the process. There was an increase in the net amount of HLC in the alkali extracts throughout composting, especially in the first 7 to 12 wk of the process, as well as a relative enrichment of HLC with respect to NHC. Values of humification index and degree of humification in end products were consistent with an adequate level of compost stability. The stability parameter BNIN/NTOT showed to be a reliable indicator of stability in ligno-cellulosic wastes. Parameters based on the alkali-extracted C and microbial biomass clearly reflected the transformation of the OM during composting and can be used as stability parameters in ligno-cellulosic waste composts.
DescripciónTechnical Reports
Versión del editorhttp://dx.doi.org/10.2134/jeq2006.0055
Aparece en las colecciones: (CEBAS) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.