Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/160097
COMPARTIR / EXPORTAR:
logo share SHARE logo core CORE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorSchrade, Mattias-
dc.contributor.authorMasó, Nahum-
dc.contributor.authorPerejón, Antonio-
dc.contributor.authorPérez-Maqueda, Luis A.-
dc.contributor.authorWest, Anthony R.-
dc.date.accessioned2018-02-05T08:26:34Z-
dc.date.available2018-02-05T08:26:34Z-
dc.date.issued2017-
dc.identifierdoi: 10.1039/c7tc03345a-
dc.identifierissn: 2050-7526-
dc.identifier.citationJournal of Materials Chemistry C 5: 10077- 10086 (2017)-
dc.identifier.urihttp://hdl.handle.net/10261/160097-
dc.description.abstractBiFeO attracts considerable attention for its rich functional properties, including room temperature coexistence of magnetic order and ferroelectricity and more recently, the discovery of conduction pathways along ferroelectric domain walls. Here, insights into the defect chemistry and electrical properties of BiFeO are obtained by in situ measurements of electrical conductivity, σ, and Seebeck coefficient, α, of undoped, cation-stoichiometric BiFeO and acceptor-doped BiCaFeO ceramics as a function of temperature and oxygen partial pressure pO. BiCaFeO exhibits p-type conduction; the dependencies of σ and α on pO show that Ca dopants are compensated mainly by oxygen vacancies. By contrast, undoped BiFeO shows a simultaneous increase of σ and α with increasing pO, indicating intrinsic behavior with electrons and holes as the main defect species in almost equal concentrations. The pO-dependency of σ and α cannot be described by a single point defect model but instead, is quantitatively described by a combination of intrinsic and acceptor-doped characteristics attributable to parallel conduction pathways through undoped grains and defect-containing domain walls; both contribute to the total charge transport in BiFeO. Based on this model, we discuss the charge transport mechanism and carrier mobilities of BiFeO and show that several previous experimental findings can readily be explained within the proposed model.-
dc.publisherRoyal Society of Chemistry (UK)-
dc.relation.isversionofPostprint-
dc.rightsopenAccessen_EN
dc.titleDefect chemistry and electrical properties of BiFeO3-
dc.typeartículo-
dc.identifier.doi10.1039/c7tc03345a-
dc.embargo.terms2018-09-12-
dc.date.updated2018-02-05T08:26:34Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.relation.csic-
dc.type.coarhttp://purl.org/coar/resource_type/c_6501es_ES
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.cerifentitytypePublications-
item.openairetypeartículo-
item.grantfulltextopen-
Aparece en las colecciones: (ICMS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
Defect_chemistry_and_electrical_properties_of_BiFeO3.pdf2,78 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

SCOPUSTM   
Citations

55
checked on 09-abr-2024

WEB OF SCIENCETM
Citations

50
checked on 23-feb-2024

Page view(s)

258
checked on 16-abr-2024

Download(s)

295
checked on 16-abr-2024

Google ScholarTM

Check

Altmetric

Altmetric


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.