English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/159806
Share/Impact:
Statistics
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorYudistira, D.-
dc.contributor.authorBoes, A.-
dc.contributor.authorGraczykowski, B.-
dc.contributor.authorAlzina, Francesc-
dc.contributor.authorYeo, L. Y.-
dc.contributor.authorSotomayor Torres, C. M.-
dc.contributor.authorMitchell, Arnan-
dc.date.accessioned2018-01-29T12:09:54Z-
dc.date.available2018-01-29T12:09:54Z-
dc.date.issued2016-
dc.identifierdoi: 10.1103/PhysRevB.94.094304-
dc.identifierissn: 2469-9950-
dc.identifiere-issn: 2469-9969-
dc.identifier.citationPhysical Review B 94(9): 094304 (2016)-
dc.identifier.urihttp://hdl.handle.net/10261/159806-
dc.description.abstractWe report on nanoscale pillar-based hypersonic phononic crystals in single crystal Z-cut lithium niobate. The phononic crystal is formed by a two-dimensional periodic array of nearly cylindrical nanopillars 240 nm in diameter and 225 nm in height, arranged in a triangular lattice with a 300-nm lattice constant. The nanopillars are fabricated by the recently introduced nanodomain engineering via laser irradiation of patterned chrome followed by wet etching. Numerical simulations and direct measurements using Brillouin light scattering confirm the simultaneous existence of nonradiative complete surface phononic band gaps. The band gaps are found below the sound line at hypersonic frequencies in the range 2-7 GHz, formed from local resonances and Bragg scattering. These hypersonic structures are realized directly in the piezoelectric material lithium niobate enabling phonon manipulation at significantly higher frequencies than previously possible with this platform, opening new opportunities for many applications in plasmonic, optomechanic, microfluidic, and thermal engineering.-
dc.description.sponsorshipNanodomain engineering in this work was carried out at the Melbourne Centre for Nanofabrication (MCN) and the Micro-Nano Research Facility (MNRF) at RMIT Univeristy. The technique for nanodomain engineering was a scientific output of the ARC Centre of Excellence program (CE110001018). B.G., F.A., and C.M.S.T. acknowledge the partial support of the Spanish national projects PHENTOM (FIS2015-70862-P) and the Severo Ochoa program (Grant No. SEV-2013-0295) and the EU projects MERGING (Grant No. 309150).-
dc.publisherAmerican Physical Society-
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/309150-
dc.relationMINECO/ICTI2013-2016/FIS2015-70862-P-
dc.relationMINECO/ICTI2013-2016/SEV-2013-0295-
dc.relation.isversionofPublisher's version-
dc.rightsopenAccess-
dc.titleNanoscale pillar hypersonic surface phononic crystals-
dc.typeartículo-
dc.relation.publisherversionhttps://doi.org/10.1103/PhysRevB.94.094304-
dc.date.updated2018-01-29T12:09:54Z-
dc.description.versionPeer Reviewed-
dc.language.rfc3066eng-
dc.rights.licensehttps://creativecommons.org/licenses/by/4.0/-
dc.contributor.funderEuropean Commission-
dc.contributor.funderRMIT University-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderAgence Nationale de la Recherche (France)-
dc.contributor.funderAustralian National Fabrication Facility-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001665es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/100008015es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001780es_ES
Appears in Collections:(CIN2) Artículos
Files in This Item:
File Description SizeFormat 
nanopilla.pdf1,09 MBAdobe PDFThumbnail
View/Open
Show simple item record
 

Related articles:


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.