English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/15963
Compartir / Impacto:
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL

Quadratic discrete dynamics associated to quadratic maps in the plane

AutorDurán Díaz, Raúl; Hernández Encinas, Luis; Muñoz Masqué, Jaime
Palabras claveBilinear symmetric map
Fractal subset
Linear group
Quadratic discrete system.
MSC 2000
Primary 68U05
Secondary 28A80
Fecha de publicaciónjun-2009
ResumenDynamical systems allow one to model many phenomena, not only in Physics and Mathematics, but also in Biology, Engineering, Economics, etc. A bidimensional discrete dynamical system consists in iterating a mapping $f\colon \mathbb{R}^2\to \mathbb{R}^2$. The evolution of a point $p\in \mathbb{R}^2$ is described by the sequence of its iterated points, i.e.,$f^{n}(p)=f(f^{n-1}(p)),\dotsc,$ $n=0$, $n=1$, $n=2,\dotsc,$ showing the state of $p$ at the times $t=0,t=1,t=2,\dotsc,t=n$, etc. Such sequences replace the flux of a vector field in a continuous system and they are the object of Discrete Dynamics. The best known bidimensional discrete dynamical systems are the quadratic ones. In order to study them it is important to work with normal forms. This is achieved by means of invariants, which is a function depending on the system parameters remaining unchanged when a change of coordinates, is made. We study the fractal associated to any bidimensional regular homogeneous quadratic system (each of these terms defined below), which is the analogous to the Mandelbrot fractal associated to the map $z=x+yi\mapsto z^2$.
DescripciónIn: International Conference on Computational and Mathematical Methods on Science and Engineering, (CMMSE-2009), vol. II, Proceedings 437-448. J. Vigo-Aguiar (Ed.), Junio-Julio, 2009.
Aparece en las colecciones: (IFA) Comunicaciones congresos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
quadraticCMMSE.pdf273,45 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.