English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/159029
Share/Impact:
Statistics
logo share SHARE   Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:

DC FieldValueLanguage
dc.contributor.authorMolet, Paues_ES
dc.contributor.authorGarcía Pomar, Juan Luises_ES
dc.contributor.authorMatricardi, Cristianoes_ES
dc.contributor.authorGarriga Bacardi, Miqueles_ES
dc.contributor.authorAlonso Carmona, M. Isabeles_ES
dc.contributor.authorMihi, Agustínes_ES
dc.date.accessioned2018-01-12T09:38:18Z-
dc.date.available2018-01-12T09:38:18Z-
dc.date.issued2018-01-12-
dc.identifier.citationAdvanced Materials: 10.1002/adma.201705876 (2018)es_ES
dc.identifier.issn0935-9648-
dc.identifier.urihttp://hdl.handle.net/10261/159029-
dc.description.abstractThe design of ultrathin semiconducting materials that achieve broadband absorption is a long-sought-after goal of crucial importance for optoelectronic applications. To date, attempts to tackle this problem consisted either of the use of strong—but narrowband—or broader—but moderate—light-trapping mechanisms. Here, a strategy that achieves broadband optimal absorption in arbitrarily thin semiconductor materials for all energies above their bandgap is presented. This stems from the strong interplay between Brewster modes, sustained by judiciously nanostructured thin semiconductors on metal films, and photonic crystal modes. Broadband near-unity absorption in Ge ultrathin films is demonstrated, which extends from the visible to the Ge bandgap in the near-infrared and is robust against angle of incidence variation. The strategy follows an easy and scalable fabrication route enabled by soft nanoimprinting lithography, a technique that allows seamless integration in many optoelectronic fabrication procedures.es_ES
dc.description.sponsorshipThe authors thank the Spanish Ministry of Economy and Competitiveness (MINECO) for its support through Grant MAT2016-79053-P. A.M. was funded by a Ramón y Cajal fellowship (RYC-2014-16444). The work at ICMAB was carried out under the auspices of the Spanish Severo Ochoa Centre of Excellence programme (Grant No. SEV-2015-0496). This project has received funding from the European Research Council (ERC ENLIGHTMENT) under the European Union's Horizon 2020 research and innovation programme (Grant No. 637116).es_ES
dc.language.isoenges_ES
dc.publisherWiley-VCHes_ES
dc.relationMINECO/ICTI2013-2016/MAT2016-79053-Pes_ES
dc.relationMINECO/ICTI2013-2016/SEV-2015-0496es_ES
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/637116es_ES
dc.relationMINECO/ICTI2013-2016/RYC-2014-16444-
dc.relation.isversionofPublisher's versiones_ES
dc.rightsopenAccesses_ES
dc.subjectBroadband absorptiones_ES
dc.subjectNanostructuringes_ES
dc.subjectPhotonic crystales_ES
dc.subjectSoft lithographyes_ES
dc.titleUltrathin Semiconductor Superabsorbers from the Visible to the Near-Infraredes_ES
dc.typeartículoes_ES
dc.description.peerreviewedPeer reviewedes_ES
dc.relation.publisherversionhttp://dx.doi.org/10.1002/adma.201705876es_ES
dc.rights.licensehttps://creativecommons.org/licenses/by-nc/4.0/es_ES
dc.contributor.funderMinisterio de Economía y Competitividad (España)es_ES
dc.contributor.funderEuropean Research Counciles_ES
dc.relation.csices_ES
oprm.item.hasRevisionno ko 0 false*
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000781es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
Appears in Collections:(ICMAB) Artículos
Files in This Item:
File Description SizeFormat 
Molet_AdvMat_2018_editorial.pdfArtículo principal1,39 MBAdobe PDFThumbnail
View/Open
Molet_AdvMat_2018_suppl_editorial.pdfInformación complementaria2,1 MBAdobe PDFThumbnail
View/Open
Show simple item record
 


WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.