English
español
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10261/158887
Share/Impact:
Statistics |
![]() ![]() |
|
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE | ||
|
Title: | Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy, a new approach to study humic material? |
Authors: | Knicker, Heike ![]() |
Issue Date: | 21-Apr-2016 |
Publisher: | European Geosciences Union |
Citation: | Geophysical Research Abstracts Vol. 18, EGU2016-8235 (2016) |
Abstract: | Compared to solution NMR spectroscopy, solid-state NMR spectra suffer from broad resonance lines and low resolution. This could be overcome by the use of 2-dimenstional solid-state NMR pulse sequences. Until recently, this approach has been unfeasible as a routine tool in soil chemistry, mainly because of the low NMR sensitivity of the respective samples. A possibility to circumvent those sensitivity problems represents high-field Dynamic Nuclear Polarization (DNP) solid-state NMR spectroscopy (Barnes et al., 2008), allowing considerable signal enhancements (Akbey et al., 2010). This is achieved by a microwave-driven transfer of polarization from a paramagnetic center to nuclear spins. Application of DNP to MAS spectra of biological systems (frozen solutions) showed enhancements of the factor 40 to 50 (Hall et al., 1997). Enhancements of this magnitude, thus may enable the use of at least some of the 2D solid-state NMR techniques that are presently already applied for pure proteins but are difficult to apply to soil peptides in their complex matrix. After adjusting the required acquisition parameters to the system ¿soil organic matter¿, lower but still promising enhancement factors were achieved. Additional optimization was performed and allowed the acquisition of 2D 13C and 15N solid-state NMR spectraof humified 13C and 15N enriched plant residues. Within the present contribution, the first solid-state DNP NMR spectra of humic material are presented. Those data demonstrate the great potential of this approach which certainly opens new doors for a better understanding of biochemical processes in soils, sediments and water. - Akbey, Ü., Franks, W.T., Linden, A., Lange, S., Griffin, R.G., van Rossum, B.-J., Oschkinat, H., 2010. Dynamic nuclear polarization of deuterated proteins. Angewandte Chemie International Edition 49, 7803-7806. - Barnes, A.B., De Paëpe, G., van der Wel, P.C.A., Hu, K.N., Joo, C.G., Bajaj, V.S., Mak-Jurkauskas, M.L., Sirigiri, J.R., Herzfeld, J., Temkin, R.J., Griffin, R.G., 2008. High-field dynamic nuclear polarization for solid and solution biological NMR. Applied Magnetic Resonance 34, 237-263. - Hall, D.A., Maus, D.C., Gerfen, G.J., Inati, S.J., Becerra, L.R., Dahlquist, F.W., Griffin, R.G., 1997. Polarizationenhanced NMR spectroscopy of biomolecules in frozen solution. Science 276, 930-932 |
URI: | http://hdl.handle.net/10261/158887 |
Appears in Collections: | (IRNAS) Comunicaciones congresos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
accesoRestringido.pdf | 15,38 kB | Adobe PDF | ![]() View/Open |
Show full item record
Review this work
Review this work
WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.