English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/158805
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Managing for resilience: an information theory-based approach to assessing ecosystems

AutorEason, T.; Garmestani, A.S.; Stow, C.A.; Rojo, Carmen; Álvarez Cobelas, Miguel ; Cabezas, H.; Allen, C.
Palabras claveEcosystems
Resilience
Regime shifts
Multivariate
Indicators
Leading
Fisher information
Indicators
Indices
Information theory
Fecha de publicación1-feb-2016
EditorJohn Wiley & Sons
CitaciónJournal of Applied Ecology 53(3): 656-665 (2016)
ResumenEcosystems are complex and multivariate; hence, methods to assess the dynamics of ecosystems should have the capacity to evaluate multiple indicators simultaneously. Most research on identifying leading indicators of regime shifts has focused on univariate methods and simple models which have limited utility when evaluating real ecosystems, particularly because drivers are often unknown. We discuss some common univariate and multivariate approaches for detecting critical transitions in ecosystems and demonstrate their capabilities via case studies. Synthesis and applications. We illustrate the utility of an information theory-based index for assessing ecosystem dynamics. Trends in this index also provide a sentinel of both abrupt and gradual transitions in ecosystems.
URIhttp://hdl.handle.net/10261/158805
Identificadoresdoi: 10.1111/1365-2664.12597
issn: 1365-2664
Aparece en las colecciones: (MNCN) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.