English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/158709
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy

AutorPadró, Joan-Cristian; Pons, Xavier; Aragonés, David ; Díaz-Delgado, Ricardo ; García, Diego; Bustamante, Javier ; Pesquer, Lluís; Domingo-Marimon, Cristina; González-Guerrero, Óscar; Cristóbal, Jordi; Doktor, Daniel; Lange, Maximilian
Palabras claveRadiometric correction
Landsat-7
Landsat-8
Sentinel- 2A
Landsat legacy
Field spectroradiometry
Pseudoinvariant areas (PIA)
Fecha de publicación2017
EditorMultidisciplinary Digital Publishing Institute
CitaciónRemote Sensing, 9:1319 (2017)
ResumenThe use of Pseudoinvariant Areas (PIA) makes it possible to carry out a reasonably robust and automatic radiometric correction for long time series of remote sensing imagery, as shown in previous studies for large data sets of Landsat MSS, TM, and ETM+ imagery. In addition, they can be employed to obtain more coherence among remote sensing data from different sensors. The present work validates the use of PIA for the radiometric correction of pairs of images acquired almost simultaneously (Landsat-7 (ETM+) or Landsat-8 (OLI) and Sentinel-2A (MSI)). Four pairs of images from a region in SW Spain, corresponding to four different dates, together with field spectroradiometry measurements collected at the time of satellite overpass were used to evaluate a PIA-based radiometric correction. The results show a high coherence between sensors (r2 = 0.964) and excellent correlations to in-situ data for the MiraMon implementation (r2 > 0.9). Other methodological alternatives, ATCOR3 (ETM+, OLI, MSI), SAC-QGIS (ETM+, OLI, MSI), 6S-LEDAPS (ETM+), 6S-LaSRC (OLI), and Sen2Cor-SNAP (MSI), were also evaluated. Almost all of them, except for SAC-QGIS, provided similar results to the proposed PIA-based approach. Moreover, as the PIA-based approach can be applied to almost any image (even to images lacking of extra atmospheric information), it can also be used to solve the robust integration of data from new platforms, such as Landsat-8 or Sentinel-2, to enrich global data acquired since 1972 in the Landsat program. It thus contributes to the program’s continuity, a goal of great interest for the environmental, scientific, and technical community
Versión del editorhttp://dx.doi.org/10.3390/rs9121319
URIhttp://hdl.handle.net/10261/158709
DOI10.3390/rs9121319
Aparece en las colecciones: (EBD) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
remotesensing-09-01319-v2.pdf21,24 MBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.