English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/15820
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Citado 11 veces en Web of Knowledge®  |  Ver citas en Google académico
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Localization properties of driven disordered one-dimensional systems

AutorMartinez, Dario F.; Molina, Rafael A.
Palabras clave[PACS] Localization effects
[PACS] Weak or Anderson localization
[PACS] Quantum wires
Fecha de publicaciónjul-2006
EditorSpringer
CitaciónEuropean Physical Journal B 52(2): 281–290 (2006)
ResumenWe generalize the definition of localization length to disordered systems driven by a timeperiodic potential using a Floquet-Green function formalism. We study its dependence on the amplitude and frequency of the driving field in a one-dimensional tight-binding model with different amounts of disorder in the lattice. As compared to the autonomous system, the localization length for the driven system can increase or decrease depending on the frequency of the driving. We investigate the dependence of the localization length with the particle’s energy and prove that it is always periodic. Its maximum is not necessarily at the band center as in the non-driven case. We study the adiabatic limit by introducing a phenomenological inelastic scattering rate which limits the delocalizing effect of low-frequency fields.
Descripción10 pages, 7 figures.--PACS nrs.: 72.15.Rn; 73.20.Fz; 73.21.Hb.--ArXiv pre-print available at: http://arxiv.org/abs/cond-mat/0606510v1
Versión del editorhttp://dx.doi.org/10.1140/epjb/e2006-00293-7
URIhttp://hdl.handle.net/10261/15820
DOI10.1140/epjb/e2006-00293-7
ISSN1434-6028 (Print)
1434-6036 (Online)
Aparece en las colecciones: (CFMAC-IEM) Artículos
Ficheros en este ítem:
No hay ficheros asociados a este ítem.
Mostrar el registro completo
 



NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.