English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/158180
COMPARTIR / IMPACTO:
Estadísticas
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:
Título

Application of a sparseness constraint in multivariate curve resolution - Alternating least squares

AutorHugelier, Siewert; Piqueras, Sara; Bedia, Carmen; De Juan, Anna; Ruckebusch, Cyril
Palabras claveHyperspectral image analysis
Mass spectrometry
MCR-ALS
Sparseness
Fecha de publicación25-ago-2017
EditorElsevier
CitaciónAnalytica Chimica Acta: (2017)
ResumenThe use of sparseness in chemometrics is a concept that has increased in popularity. The advantage is, above all, a better interpretability of the results obtained. In this work, sparseness is implemented as a constraint in multivariate curve resolution - alternating least squares (MCR-ALS), which aims at reproducing raw (mixed) data by a bilinear model of chemically meaningful profiles. In many cases, the mixed raw data analyzed are not sparse by nature, but their decomposition profiles can be, as it is the case in some instrumental responses, such as mass spectra, or in concentration profiles linked to scattered distribution maps of powdered samples in hyperspectral images. To induce sparseness in the constrained profiles, one-dimensional and/or two-dimensional numerical arrays can be fitted using a basis of Gaussian functions with a penalty on the coefficients. In this work, a least squares regression framework with L0-norm penalty is applied. This L0-norm penalty constrains the number of non-null coefficients in the fit of the array constrained without having an a priori on the number and their positions. It has been shown that the sparseness constraint induces the suppression of values linked to uninformative channels and noise in MS spectra and improves the location of scattered compounds in distribution maps, resulting in a better interpretability of the constrained profiles. An additional benefit of the sparseness constraint is a lower ambiguity in the bilinear model, since the major presence of null coefficients in the constrained profiles also helps to limit the solutions for the profiles in the counterpart matrix of the MCR bilinear model. © 2017 Elsevier B.V.
Versión del editorhttps://doi.org/10.1016/j.aca.2017.08.021
URIhttp://hdl.handle.net/10261/158180
DOI10.1016/j.aca.2017.08.021
Aparece en las colecciones: (IDAEA) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Application of a sparseness constraint in multivariate curve resolution – Alternating least squares.docx Embargado hasta 25 de agosto de 20192,03 MBMicrosoft Word XMLVisualizar/Abrir     Petición de una copia
Mostrar el registro completo
 


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.