English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/15815
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Bayesian approach and naturalness in MSSM analyses for the LHC

AutorCabrera, María Eugenia ; Casas, Alberto ; Ruiz de Austri, Roberto
Palabras claveBeyond Standard Model
Supersymmetric Effective Theories
Fecha de publicación11-mar-2009
EditorInstitute of Physics Publishing
International School for Advanced Studies
ResumenThe start of LHC has motivated an effort to determine the relative probability of the different regions of the MSSM parameter space, taking into account the present, theoretical and experimental, wisdom about the model. Since the present experimental data are not powerful enough to select a small region of the MSSM parameter space, the choice of a judicious prior probability for the parameters becomes most relevant. Previous studies have proposed theoretical priors that incorporate some (conventional) measure of the fine-tuning, to penalize unnatural possibilities. However, we show that such penalization arises from the Bayesian analysis itself (with no ad hoc assumptions), upon the marginalization of the mu-parameter. Furthermore the resulting effective prior contains precisely the Barbieri-Giudice measure, which is very satisfactory. On the other hand we carry on a rigorous treatment of the Yukawa couplings, showing in particular that the usual practice of taking the Yukawas "as required", approximately corresponds to taking logarithmically flat priors in the Yukawa couplings. Finally, we use an efficient set of variables to scan the MSSM parameter space, trading in particular B by tan beta, giving the effective prior in the new parameters. Beside the numerical results, we give accurate analytic expressions for the effective priors in all cases. Whatever experimental information one may use in the future, it is to be weighted by the Bayesian factors worked out here.
Descripción19 pages, 3 figures.-- ISI article identifier:000265600800075 .-- ArXiv pre-print avaible at: http://arxiv.org/abs/0812.0536
Versión del editorhttp://dx.doi.org/10.1088/1126-6708/2009/03/075
Aparece en las colecciones: (IFIC) Artículos
(IFT) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
cabrera.pdf588,49 kBAdobe PDFVista previa
Mostrar el registro completo

Artículos relacionados:

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.