English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/158098
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


The quantal catecholamine release from mouse chromaffin cells challenged with repeated ACh pulses is regulated by the mitochondrial Na+/Ca2+ exchanger

AuthorsLópez-Gil, Angela; Nanclares, Carmen; Méndez-López, Iago; Martínez-Ramírez, Carmen; Ríos, Cristobal de los; Padín-Nogueira, J. Fernando; Montero, Mayte ; Gandía, Luis; García, Antonio G.
KeywordsMitochondrial sodium/calcium exchanger
Quantal release of catecholamine
Mouse chromaffin cells
Issue Date2017
PublisherPhysiological Society (Great Britain)
John Wiley & Sons
CitationJournal of Physiology 595(6): 2129-2146 (2017)
AbstractUsing caged-Ca photorelease or paired depolarising pulses in voltage-clamped chromaffin cells (CCs), various pools of secretory vesicles with different readiness to undergo exocytosis have been identified. Whether these pools are present in unclamped CCs challenged with ACh, the physiological neurotransmitter at the splanchnic nerve-CC synapse, is unknown. We have explored here whether an ACh-sensitive ready-release vesicle pool (ASP) is present in C57BL6J mouse chromaffin cells (MCCs). Single cells were fast perfused with a Tyrode solution at 37°C, and challenged with 12 sequential ACh pulses (100 μm, 2 s, every 30 s) plus a K pulse given at the end (75 mm K). After the first 2–3 ACh pulses the amperometrically monitored secretory responses promptly decayed to a steady-state level of around 25% of the initial response. The last K pulse, however, overcame such decay. Repeated ACh pulses to voltage-clamped cells elicited non-desensitising nicotinic currents. Also, the [Ca] transients elicited by repeated ACh pulses that were superimposed on a stable baseline elevation did not undergo decay. The novel blocker of the mitochondrial Na/Ca exchanger (mNCX) ITH12662 prevented the decay of secretion elicited by ACh pulses and delayed the rate of [Ca] clearance. The experiments are compatible with the idea that C57BL6J MCCs have an ASP vesicle pool that is selectively recruited by the physiological neurotransmitter ACh and is regulated by the rate of Ca delivery from mitochondria to the cytosol, through the mNCX.
Identifiersdoi: 10.1113/JP273339
e-issn: 1469-7793
issn: 0022-3751
Appears in Collections:(IBGM) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.