English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/158031
Compartir / Impacto:
Estadísticas
Add this article to your Mendeley library MendeleyBASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Título

Object-based early monitoring of a grass weed in a grass crop using high resolution UAV imagery

AutorLópez Granados, Francisca ; Torres-Sánchez, Jorge ; Castro, Ana Isabel de ; Serrano Pérez, Angélica ; Mesas-Carrascosa, Francisco Javier; Peña Barragán, José Manuel
Palabras claveCorn
Drone
Johnsongrass
Maize
OBIA
Precision agriculture
Site-specific herbicide
Sorghum halepense
Weed detection and mapping
UAS
Fecha de publicacióndic-2016
EditorSpringer Nature
CitaciónAgronomy for Sustainable Development 36: 67 (2016)
ResumenSorghum halepense (johnsongrass) is a perennial weed with a vegetative reproductive system and one of the most competitive weeds in maize showing a spatial distribution in compact patches. When maize is irrigated, successive weed emergences occur in the early phenological phases of the crop, which require several herbicide applications. Our aim was to provide an accurate tool for an early detection and mapping of johnsongrass patches and delineate the actual surface area requiring a site-specific herbicide treatment based on the weed coverage. This early detection represents a major challenge in actual field scenarios because both species are in the Poaceae family, and show analogous spectral patterns, an extraordinarily similar appearance and a parallel phenological evolution. To solve this, an automatic OBIA (object-based-image-analysis) procedure was developed to be applied on orthomosaicked images using visible (red-green-blue bands) and multispectral (red-green-blue and near infrared bands) cameras collected by an unmanned aerial vehicle (UAV) that flew at altitudes of 30, 60 and 100 m on two maize fields. One of our first phases was the generation of accurate orthomosaicked images of an herbaceous crop such as maize, which presented a repetitive pattern and nearly no invariant parameters to conduct the aerotriangulation. Here, we show that high-quality orthomosaicks were produced from both cameras and that they were able to be the first step for mapping the johnsongrass patches. The most accurate weed maps were obtained using the multispectral camera at an altitude of 30 m in both fields. These maps were then used to design a site-specific weed management program, and we demonstrated that potential herbicide savings ranged from 85 to 96 %. Our results showed that accurate and timely maps of johnsongrass patches in maize can be a key element in achieving site-specific and sustainable herbicide applications for reducing spraying herbicides and costs.
Versión del editorhttp://doi.org/10.1007/s13593-016-0405-7
URIhttp://hdl.handle.net/10261/158031
DOI10.1007/s13593-016-0405-7
ISSN1774-0746
E-ISSN1773-0155
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.