English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/157891
logo share SHARE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:

Dynamics of Dissipative Solitons in Presence of Inhomogeneities and Drift

AutorParra-Rivas, P. ; Gomila, Damià ; Gelens, Lendert ; Matías, Manuel A. ; Colet, Pere
Palabras claveDissipative soliton
Fiber cavities
Lugiato-Lefever model
Periodically pumped ring cavities
Swift-Hohenberg equation
Fecha de publicaciónfeb-2016
CitaciónNonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers 5: 107-127 (2016)
ResumenThis chapter presents the general theory about how different dissipative soliton (DS) dynamics are induced by inhomogeneities and drift. For this purpose, the prototypical Swift-Hohenberg equation (SHE) is used. The chapter focuses on the mechanism that leads to excitable dynamics. It discusses the modeling of fiber cavities in terms of the Lugiato-Lefever model, and describes the effect of periodic pumping in ring cavities. In fiber cavities and microresonators, inhomogeneities and drift are unavoidable due to imperfections in the fabrication process, material properties, and higher-order chromatic light dispersion. In the context of fiber cavities and microresonators, periodic boundary conditions lead to the emission of a train of solitons from the inhomogeneity. These trains of solitons lie at the basis of Kerr frequency comb generation. Therefore, the dynamical instabilities of cavity solitons induced by imperfections of themicroresonator can be particularly relevant for applications relying on stable frequency combs.
Versión del editorhttp://doi.org/10.1002/9783527686476.ch5
Aparece en las colecciones: (IFISC) Libros y partes de libros
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
accesoRestringido.pdf15,38 kBAdobe PDFVista previa
Mostrar el registro completo

NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.