English   español  
Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/15785
Título

A rapid technique for classifying phytoplankton fluorescence spectra based on self-organizing maps

AutorAymerich, Ismael F. ; Piera, Jaume ; Soria-Frisch, Aureli; Cros, Lluïsa
Palabras claveSelf-organizing maps
SOMs
Phytoplankton discrimination
Classification
Fluorescence spectra
Derivative analysis
SOM
Fecha de publicaciónjun-2009
EditorSociety for Applied Spectroscopy
CitaciónApplied Spectroscopy 63(6): 716-726 (2009)
ResumenFluorescence spectroscopy has been demonstrated to be a powerful tool for characterizing phytoplankton communities in marine environments. Using different fluorescence spectra techniques, it is now possible to discriminate the major phytoplankton groups. However, most of the current techniques are based on fluorescence excitation measurements, which require stimulation at different wavelengths and thus considerable time to obtain the complete spectral profile. This requirement may be an important constraint for several mobile oceanographic platforms, such as vertical profilers or autonomous underwater vehicles, which require rapid-acquisition instruments. This paper presents a novel technique for classifying fluorescence spectra based on self-organizing maps (SOMs), one of the most popular artificial neural network (ANN) methods. The method is able to achieve phytoplankton discrimination using only fluorescence emission spectra (single wavelength excitation), thus reducing the acquisition time. The discrimination capabilities of SOM using excitation and emission spectra are compared. The analysis shows that the SOM has a good performance using excitation spectra, whereas data preprocessing is required in order to obtain similar discrimination capabilities using emission spectra. The final results obtained using emission spectra indicate that the discrimination is properly achieved even between algal groups, such as diatoms and dinoflagellates, which cannot be discriminated with previous methods. We finally point out that although techniques based on excitation spectra can achieve a better taxonomic accuracy, there are some applications that require faster acquisition processes. Acquiring emission spectra is almost instantaneous, and techniques such as SOM can achieve good classification performance using appropriately preprocessed data
Descripción11 pages, 13 figures, 7 tables
Versión del editorhttp://dx.doi.org/10.1366/000370209788559683
URIhttp://hdl.handle.net/10261/15785
DOI10.1366/000370209788559683
ISSN0003-7028
E-ISSN1943-3530
Aparece en las colecciones: (UTM) Artículos
(ICM) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
apls-63-06-01_716_726.pdf952,55 kBAdobe PDFVista previa
Visualizar/Abrir
Mostrar el registro completo
 

Artículos relacionados:


NOTA: Los ítems de Digital.CSIC están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.