English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/157780
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE
Exportar a otros formatos:


Early season weed mapping in sunflower using UAV technology: variability of herbicide treatment maps against weed thresholds

AuthorsLópez Granados, Francisca ; Torres-Sánchez, Jorge ; Serrano Pérez, Angélica ; Castro, Ana Isabel de ; Mesas-Carrascosa, Francisco Javier; Peña Barragán, José Manuel
KeywordsSite-specific weed management (SSWM)
Mosaicked imagery object-based-image-analysis (OBIA)
Remote sensing
Unmanned aerial vehicle (UAV)
Weed threshold
Issue DateApr-2016
CitationPrecision Agriculture 17(2): 183-199 (2016)
AbstractSite-specific weed management is defined as the application of customised control treatments only where weeds are located within the crop-field by using adequate herbicide according to weed emergence. The aim of the study was to generate georeferenced weed seedling infestation maps in two sunflower fields by analysing overlapping aerial images of the visible and near-infrared spectrum (using visible or multi-spectral cameras) collected by an unmanned aerial vehicle (UAV) flying at 30 and 60 m altitudes. The main tasks focused on the configuration and evaluation of the UAV and its sensors for image acquisition and ortho-mosaicking, as well as the development of an automatic and robust image analysis procedure for weed seedling mapping used to design a site-specific weed management program. The control strategy was based on seven weed thresholds with 2.5 steps of increasing ratio from 0 % (herbicide must be applied just when there is presence or absence of weed) to 15 % (herbicide applied when weed coverage >15 %). As a first step of the imagery analysis, sunflower rows were correctly matched to the ortho-mosaicked imagery, which allowed accurate image analysis using object-based image analysis [object-based-image-analysis (OBIA) methods]. The OBIA algorithm developed for weed seedling mapping with ortho-mosaicked imagery successfully classified the sunflower-rows with 100 % accuracy in both fields for all flight altitudes and camera types, indicating the computational and analytical robustness of OBIA. Regarding weed discrimination, high accuracies were observed using the multi-spectral camera at any flight altitude, with the highest (approximately 100 %) being those recorded for the 15 % weed threshold, although satisfactory results from 2.5 to 5 % thresholds were also observed, with accuracies higher than 85 % for both field 1 and field 2. The lowest accuracies (ranging from 50 to 60 %) were achieved with the visible camera at all flight altitudes and 0 % weed threshold. Herbicide savings were relevant in both fields, although they were higher in field 2 due to less weed infestation. These herbicide savings varied according to the different scenarios studied. For example, in field 2 and at 30 m flight altitude and using the multi-spectral camera, a range of 23–3 % of the field (i.e., 77 and 97 % of area) could be treated for 0–15 % weed thresholds. The OBIA procedure computed multiple data which permitted calculation of herbicide requirements for timely and site-specific post-emergence weed seedling management.
Publisher version (URL)http://doi.org/10.1007/s11119-015-9415-8
Appears in Collections:(IAS) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.