Por favor, use este identificador para citar o enlazar a este item: http://hdl.handle.net/10261/157731
COMPARTIR / EXPORTAR:
logo share SHARE BASE
Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL | DATACITE

Invitar a revisión por pares abierta
Campo DC Valor Lengua/Idioma
dc.contributor.authorHernández-Clemente, Rocío-
dc.contributor.authorNavarro-Cerrillo, Rafael M.-
dc.contributor.authorRomero Ramírez, Francisco J.-
dc.contributor.authorHornero, Alberto-
dc.contributor.authorZarco-Tejada, Pablo J.-
dc.date.accessioned2017-11-24T11:58:32Z-
dc.date.available2017-11-24T11:58:32Z-
dc.date.issued2014-11-21-
dc.identifier.citationRemote Sensing 6(11): 11627-11648 (2014)-
dc.identifier.issn2072-4292-
dc.identifier.urihttp://hdl.handle.net/10261/157731-
dc.description.abstractAirborne laser scanner (ALS) data provide an enhanced capability to remotely map two key variables in forestry: leaf area index (LAI) and tree height (H). Nevertheless, the cost, complexity and accessibility of this technology are not yet suited for meeting the broad demands required for estimating and frequently updating forest data. Here we demonstrate the capability of alternative solutions based on the use of low-cost color infrared (CIR) cameras to estimate tree-level parameters, providing a cost-effective solution for forest inventories. ALS data were acquired with a Leica ALS60 laser scanner and digital aerial imagery (DAI) was acquired with a consumer-grade camera modified for color infrared detection and synchronized with a GPS unit. In this paper we evaluate the generation of a DAI-based canopy height model (CHM) from imagery obtained with low-cost CIR cameras using structure from motion (SfM) and spatial interpolation methods in the context of a complex canopy, as in forestry. Metrics were calculated from the DAI-based CHM and the DAI-based Normalized Difference Vegetation Index (NDVI) for the estimation of tree height and LAI, respectively. Results were compared with the models estimated from ALS point cloud metrics. Field measurements of tree height and effective leaf area index (LAIe) were acquired from a total of 200 and 26 trees, respectively. Comparable accuracies were obtained in the tree height and LAI estimations using ALS and DAI data independently. Tree height estimated from DAI-based metrics (Percentile 90 (P90) and minimum height (MinH)) yielded a coefficient of determination (R<sup>2</sup>) = 0.71 and a root mean square error (RMSE) = 0.71 m while models derived from ALS-based metrics (P90) yielded an R<sup>2</sup> = 0.80 and an RMSE = 0.55 m. The estimation of LAI from DAI-based NDVI using Percentile 99 (P99) yielded an R<sup>2</sup> = 0.62 and an RMSE = 0.17 m<sup>2</sup>/m<sup>−</sup><sup>2</sup>. A comparative analysis of LAI estimation using ALS-based metrics (laser penetration index (LPI), interquartile distance (IQ), and Percentile 30 (P30)) yielded an R<sup>2</sup> = 0.75 and an RMSE = 0.14 m<sup>2</sup>/m<sup>−</sup><sup>2</sup>. The results provide insight on the appropriateness of using cost-effective 3D photo-reconstruction methods for targeting single trees with irregular and heterogeneous tree crowns in complex open-canopy forests. It quantitatively demonstrates that low-cost CIR cameras can be used to estimate both single-tree height and LAI in forest inventories.-
dc.description.sponsorshipThis study was partially funded by the Spanish Centre for the Development of Industrial Technology (CDTI) in the PROMETEO Project in the framework of the Consorcios Estratégicos Nacionales de Investigación Técnica (CENIT) program, the THERMOLIDAR FP7 Project and by AGL2012-40053-C03-01 (PJZT) from the Spanish "Ministerio de Economia y Competitividad.-
dc.publisherMultidisciplinary Digital Publishing Institute-
dc.relationinfo:eu-repo/grantAgreement/EC/FP7/315165-
dc.relation.isversionofPublisher's version-
dc.subjectTree height-
dc.subjectLAI-
dc.subjectLow-cost camera-
dc.subject3D image modeling-
dc.subjectALS data-
dc.subjectOak forests-
dc.titleA Novel Methodology to Estimate Single-Tree Biophysical Parameters from 3D Digital Imagery Compared to Aerial Laser Scanner Data-
dc.identifier.doi10.3390/rs61111627-
dc.relation.publisherversionhttp://doi.org/10.3390/rs61111627-
dc.date.updated2017-11-24T11:58:32Z-
dc.rights.licensehttp://creativecommons.org/licenses/by/4.0/-
dc.contributor.funderCentro para el Desarrollo Tecnológico Industrial (España)-
dc.contributor.funderMinisterio de Economía y Competitividad (España)-
dc.contributor.funderEuropean Commission-
dc.relation.csic-
dc.identifier.funderhttp://dx.doi.org/10.13039/501100003329es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100000780es_ES
dc.identifier.funderhttp://dx.doi.org/10.13039/501100001872es_ES
item.grantfulltextopen-
item.fulltextWith Fulltext-
Aparece en las colecciones: (IAS) Artículos
Ficheros en este ítem:
Fichero Descripción Tamaño Formato
remotesensing-06-11627-v2.pdf1,29 MBAdobe PDFVista previa
Visualizar/Abrir
Show simple item record

CORE Recommender

WEB OF SCIENCETM
Citations

25
checked on 23-nov-2021

Page view(s)

264
checked on 27-mar-2024

Download(s)

190
checked on 27-mar-2024

Google ScholarTM

Check

Altmetric

Altmetric


Este item está licenciado bajo una Licencia Creative Commons Creative Commons