English   español  
Please use this identifier to cite or link to this item: http://hdl.handle.net/10261/157655
logo share SHARE logo core CORE   Add this article to your Mendeley library MendeleyBASE

Visualizar otros formatos: MARC | Dublin Core | RDF | ORE | MODS | METS | DIDL
Exportar a otros formatos:


CONDENSE: A Reconfigurable Knowledge Acquisition Architecture for Future 5G IoT

AuthorsVukobratovic, Dejan; Jakovetic, Dusan; Skachek, Vitaly; Bajovic, Dragana; Sejdinovic, Dino; Karabulut Kurt, Güneş; Hollanti, Camilla; Fischer, Ingo
KeywordsInternet of things (IoT)
Big data
Network coding
Network function computation
Machine learning
Wireless communications
Issue Date12-Jul-2016
PublisherInstitute of Electrical and Electronics Engineers
CitationIEEE Access 4: 3360- 3378 (2016)
AbstractIn forthcoming years, the Internet of Things (IoT) will connect billions of smart devices generating and uploading a deluge of data to the cloud. If successfully extracted, the knowledge buried in the data can significantly improve the quality of life and foster economic growth. However, a critical bottleneck for realizing the efficient IoT is the pressure it puts on the existing communication infrastructures, requiring transfer of enormous data volumes. Aiming at addressing this problem, we propose a novel architecture dubbed Condense which integrates the IoT-communication infrastructure into the data analysis. This is achieved via the generic concept of network function computation. Instead of merely transferring data from the IoT sources to the cloud, the communication infrastructure should actively participate in the data analysis by carefully designed en-route processing. We define the Condense architecture, its basic layers, and the interactions among its constituent modules. Furthermore, from the implementation side, we describe how Condense can be integrated into the Third Generation Partnership Project (3GPP) machine type communications (MTCs) architecture, as well as the prospects of making it a practically viable technology in a short time frame, relying on network function virtualization and software-defined networking. Finally, from the theoretical side, we survey the relevant literature on computing atomic functions in both analog and digital domains, as well as on function decomposition over networks, highlighting challenges, insights, and future directions for exploiting these techniques within practical 3GPP MTC architecture.
Publisher version (URL)http://doi.org/10.1109/ACCESS.2016.2585468
Appears in Collections:(IFISC) Artículos
Files in This Item:
File Description SizeFormat 
accesoRestringido.pdf15,38 kBAdobe PDFThumbnail
Show full item record
Review this work

Related articles:

WARNING: Items in Digital.CSIC are protected by copyright, with all rights reserved, unless otherwise indicated.